Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 10, Octobre 2019
Page(s) 771 - 778
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019155
Publié en ligne 18 octobre 2019
  1. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 2015 ; 385 : 509–16. [CrossRef] [PubMed] [Google Scholar]
  2. Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med 2018 ; 10. [Google Scholar]
  3. Kikuchi T, Morizane A, Doi D, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 2017 ; 548 : 592-6. [Google Scholar]
  4. Sneddon JB, Tang Q, Stock P, et al. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 2018 ; 22 : 810–23. [Google Scholar]
  5. Strand BL, Coron AE, Skjak-Braek G. Current and future perspectives on alginate encapsulated pancreatic islet. Stem Cells Transl Med 2017 ; 6 : 1053–8. [CrossRef] [PubMed] [Google Scholar]
  6. Bartunek J, Terzic A, Davison BA, et al. Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J 2017 ; 38 : 648–60. [CrossRef] [PubMed] [Google Scholar]
  7. Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007 ; 115 : 896–908. [CrossRef] [PubMed] [Google Scholar]
  8. Bolli R, Chugh AR, D’Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 2011 ; 378 : 1847–57. [CrossRef] [PubMed] [Google Scholar]
  9. Menasché P, Vanneaux V, Hagège A, et al. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 2018 ; 71 : 429–38. [CrossRef] [PubMed] [Google Scholar]
  10. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 2017 ; 376 : 1038–46. [Google Scholar]
  11. Ramlogan-Steel CA, Murali A, Andrzejewski S, et al. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: trials, future directions and safety considerations. Clin Exp Ophthalmol 2019 ; 47 : 521–36. [CrossRef] [PubMed] [Google Scholar]
  12. Latres E, Finan DA, Greenstein JL, et al. Navigating two roads to glucose normalization in diabetes: automated insulin delivery devices and cell therapy. Cell Metab 2019 ; 29 : 545–63. [CrossRef] [PubMed] [Google Scholar]
  13. Whone A, Luz M, Boca M, et al. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain 2019 ; 142 : 512–25. [CrossRef] [PubMed] [Google Scholar]
  14. Shiba Y, Gomibuchi T, Seto T, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 2016 ; 538 : 388–91. [CrossRef] [PubMed] [Google Scholar]
  15. Ishida M, Miyagawa S, Saito A, et al. Transplantation of human-induced pluripotent stem cell-derived cardiomyocytes is superior to somatic stem cell therapy for restoring cardiac function and oxygen consumption in a porcine model of myocardial infarction. Transplantation 2019 ; 103 : 291–8. [CrossRef] [PubMed] [Google Scholar]
  16. Mohsin S, Siddiqi S, Collins B, et al. Empowering adult stem cells for myocardial regeneration. Circ Res 2011 ; 109 : 1415–28. [Google Scholar]
  17. Romagnuolo R, Masoudpour H, Porta-Sánchez A, et al. Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Reports 2019 ; 12 : 967–81. [CrossRef] [PubMed] [Google Scholar]
  18. Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 2013 ; 12 : 689–98. [Google Scholar]
  19. Kervadec A, Bellamy V, El Harane N, et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Heart Lung Transplant 2016 ; 35 : 795–807. [Google Scholar]
  20. Barile L, Cervio E, Lionetti V, et al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovasc Res 2018 ; 114 : 992–1005. [CrossRef] [PubMed] [Google Scholar]
  21. El Harane N, Kervadec A, Bellamy V, et al. Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors. Eur Heart J 2018 ; 39 : 1835–47. [CrossRef] [PubMed] [Google Scholar]
  22. Neofytou E, O’Brien CG, Couture LA, et al. Hurdles to clinical translation of human induced pluripotent stem cells. J Clin Inves 2015 ; 125 : 2551–7. [CrossRef] [Google Scholar]
  23. Deuse T, Hu X, Gravina A, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 2019 ; 37 : 252–8. [CrossRef] [PubMed] [Google Scholar]
  24. Pan Y, Leveson-Gower DB, de Almeida PE, et al. Engraftment of embryonic stem cells and differentiated progeny following host conditioning with total lymphoid irradiation and regulatory T cells. Cell Rep 2015 ; 10 : 1793–802. [CrossRef] [PubMed] [Google Scholar]
  25. Mohamed TMA, Stone NR, Berry EC, et al. Chemical enhancement of in vitro and in vivo direct cardiac reprogramming clinical perspective. Circulation 2017 ; 135 : 978–95. [CrossRef] [PubMed] [Google Scholar]
  26. Mills RJ, Titmarsh DM, Koenig X, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA 2017 ; 114 : E8372–81. [CrossRef] [Google Scholar]
  27. Aguado BA, Mulyasasmita W, Su J, et al. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A 2012 ; 18 : 806–15. [CrossRef] [PubMed] [Google Scholar]
  28. Hou D, Youssef EA-S, Brinton TJ, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005 ; 112 : I150–6. [PubMed] [Google Scholar]
  29. Tang X-L, Nakamura S, Li Q, et al. Repeated administrations of cardiac progenitor cells are superior to a single administration of an equivalent cumulative dose. J Am Heart Assoc 2018 ; 7(4). [Google Scholar]
  30. Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009 ; 5 : 54–63. [Google Scholar]
  31. Bartolucci J, Verdugo FJ, González PL, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ Res 2017 ; 121 : 1192–204. [Google Scholar]
  32. Sun X, Shan A, Wei Z, et al. Intravenous mesenchymal stem cell-derived exosomes ameliorate myocardial inflammation in the dilated cardiomyopathy. Biochem Biophys Res Commun 2018 ; 503 : 2611–8. [Google Scholar]
  33. Wysoczynski M, Khan A, Bolli R. New paradigms in cell therapy: repeated dosing, intravenous delivery, immunomodulatory actions, and new cell types. Circ Res 2018 ; 123 : 138–58. [Google Scholar]
  34. Nizzardo M, Simone C, Rizzo F, et al. Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet 2014 ; 23 : 342–54. [CrossRef] [PubMed] [Google Scholar]
  35. Ciullo A, Biemmi V, Milano G, et al. Exosomal expression of CXCR35 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration. Int J Mol Sci 2019 ; 20(3). [Google Scholar]
  36. Qiu L, Liao MC, Chen AK, et al. Immature midbrain dopaminergic neurons derived from floor-plate method improve cell transplantation therapy efficacy for Parkinson’s disease. Stem Cells Transl Med 2017 ; 6 : 1803–14. [CrossRef] [PubMed] [Google Scholar]
  37. Schulz Thomas C Concise review: Manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes: manufacturing of pancreatic endoderm cells. Stem Cells Transl Med 2015 ; 4 : 927–31. [CrossRef] [PubMed] [Google Scholar]
  38. Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro. Cell 2014 ; 159 : 428–39. [CrossRef] [PubMed] [Google Scholar]
  39. Veerman CC, Kosmidis G, Mummery CL, et al. Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? Stem Cells Dev 2015 ; 24 : 1035–52. [CrossRef] [PubMed] [Google Scholar]
  40. Werbowetski-Ogilvie TE, Bossé M, Stewart M, et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 2009 ; 27 : 91–7. [CrossRef] [PubMed] [Google Scholar]
  41. Ben-David U, Benvenisty N The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011 ; 11 : 268–77. [Google Scholar]
  42. Secreto FJ, Li X, Smith AJ, et al. Quantification of etoposide hypersensitivity: a sensitive, functional method for assessing pluripotent stem cell quality. Stem Cells Transl Med 2017 ; 6 : 1829–39. [CrossRef] [PubMed] [Google Scholar]
  43. Tohyama S, Hattori F, Sano M, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2013 ; 12 : 127–37. [Google Scholar]
  44. Garitaonandia I, Gonzalez R, Christiansen-Weber T, et al. Neural stem cell tumorigenicity and biodistribution assessment for phase I clinical trial in Parkinson’s disease. Sci Rep 2016 ; 6 : 34478. [CrossRef] [PubMed] [Google Scholar]
  45. Itakura G, Kawabata S, Ando M, et al. Fail-safe system against potential tumorigenicity after transplantation of iPSC derivatives. Stem Cell Rep 2017 ; 8 : 673–84. [CrossRef] [Google Scholar]
  46. Liang Q, Monetti C, Shutova MV, et al. Linking a cell-division gene and a suicide gene to define and improve cell therapy safety. Nature 2018 ; 563 : 701–4. [CrossRef] [PubMed] [Google Scholar]
  47. Vegas AJ, Veiseh O, Gürtler M, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 2016 ; 22 : 306–11. [CrossRef] [PubMed] [Google Scholar]
  48. O’Neill HS, Gallagher LB, O’Sullivan J, et al. Biomaterial-enhanced cell and drug delivery: lessons learned in the cardiac field and future perspectives. Adv Mater Weinheim 2016 ; 28 : 5648–61. [Google Scholar]
  49. Redd MA, Zeinstra N, Qin W, et al. Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. Nat Commun 2019 ; 10 : 584. [CrossRef] [PubMed] [Google Scholar]
  50. Steinhoff G, Nesteruk J, Wolfien M, et al. Cardiac function improvement and bone marrow response: Outcome analysis of the randomized PERFECT phase III clinical trial of intramyocardial CD133+ application after myocardial infarction. EBioMedicine 2017 ; 22 : 208–24. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.