Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 10, Octobre 2019
Page(s) 761 - 770
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019154
Publié en ligne 18 octobre 2019
  1. Griffith F. The significance of pneumococcal types. J Hyg (Lond) 1928 ; 27 : 113–59. [CrossRef] [PubMed] [Google Scholar]
  2. Puff N. Un modèle avancé de cellule synthétique minimale. Med Sci (Paris) 2012 ; 28 : 139–41. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Noireaux V. Construction de cellules synthétiques. Med Sci (Paris) 2015 ; 31 : 1126–32. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Morowitz HJ, Tourtellotte ME. The smallest living cells. Sci Am 1962 ; 206 : 117–26. [CrossRef] [PubMed] [Google Scholar]
  5. Jordan B. Synthétique, vous avez dit « Synthétique » ? Med Sci (Paris) 2016 ; 32 : 651–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Morowitz HJ. The completeness of molecular biology. Isr J Med Sci 1984 ; 20 : 750–3. [PubMed] [Google Scholar]
  7. Bork P, Ouzounis C, Casari G, et al. Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology. Mol Microbiol 1995 ; 16 : 955–67. [CrossRef] [PubMed] [Google Scholar]
  8. Himmelreich R, Hilbert H, Plagens H, et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae . Nucleic Acids Res 1996 ; 24 : 4420. [CrossRef] [PubMed] [Google Scholar]
  9. Fraser CM, Gocayne JD, White O, et al. The minimal gene complement of Mycoplasma genitalium . Science 1995 ; 270 : 397–403. [Google Scholar]
  10. Porcar M, Danchin A, de Lorenzo V, et al. The ten grand challenges of synthetic life. Syst Synth Biol 2011 ; 5 : 1–9. [Google Scholar]
  11. Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010 ; 329 : 52–6. [Google Scholar]
  12. Hutchison CA, Chuang RY, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science 2016 ; 351 : aad6253. [Google Scholar]
  13. Gibson DG, Young L, Chuang R-Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009 ; 6 : 343–5. [CrossRef] [PubMed] [Google Scholar]
  14. Gibson DG, Smith HO, Hutchison CA, et al. Chemical synthesis of the mouse mitochondrial genome. Nat Methods 2010 ; 7 : 901–3. [CrossRef] [PubMed] [Google Scholar]
  15. Itaya M, Fujita K, Kuroki A, Tsuge K. Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods 2008 ; 5 : 41–3. [CrossRef] [PubMed] [Google Scholar]
  16. Itaya M, Tsuge K, Koizumi M, Fujita K. Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci USA 2005 ; 102 : 15971–6. [CrossRef] [Google Scholar]
  17. Halbedel S, Stülke J. Tools for the genetic analysis of Mycoplasma . Int J Med Microbiol 2007 ; 297 : 37–44. [CrossRef] [PubMed] [Google Scholar]
  18. Lartigue C, Vashee S, Algire MA, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 2009 ; 325 : 1693–6. [Google Scholar]
  19. Benders GA, Noskov VN, Denisova EA, et al. Cloning whole bacterial genomes in yeast. Nucleic Acids Res 2010 ; 38 : 2558–69. [CrossRef] [PubMed] [Google Scholar]
  20. Karas BJ, Tagwerker C, Yonemoto IT, et al. Cloning the Acholeplasma laidlawii PG-8A genome in Saccharomyces cerevisiae as a yeast centromeric plasmid. ACS Synth Biol 2012 ; 1 : 22–8. [CrossRef] [PubMed] [Google Scholar]
  21. Zhou J, Wu R, Xue X, Qin Z. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA. Nucleic Acids Res 2016 ; 44 : e124. [CrossRef] [PubMed] [Google Scholar]
  22. Rideau F, Le Roy C, Descamps ECT, et al. Cloning, stability, and modification of Mycoplasma hominis genome in yeast. ACS Synth Biol 2017 ; 6 : 891–901. [CrossRef] [PubMed] [Google Scholar]
  23. Noskov VN, Karas BJ, Young L, et al. Assembly of large, high G+C Bacterial DNA fragments in yeast. ACS Synth Biol 2012 ; 1 : 267–73. [CrossRef] [PubMed] [Google Scholar]
  24. Tagwerker C, Dupont CL, Karas BJ, et al. Sequence analysis of a complete 1.66 Mb Prochlorococcus marinus MED4 genome cloned in yeast. Nucleic Acids Res 2012 ; 40 : 10375–83. [CrossRef] [PubMed] [Google Scholar]
  25. Vashee S, Stockwell TB, Alperovich N, et al. Cloning, assembly, and modification of the primary human cytomegalovirus isolate toledo by yeast-based transformation-associated recombination. mSphere 2017 ; 2(5) : e00331–17. [Google Scholar]
  26. Oldfield LM, Grzesik P, Voorhies AA, et al. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proc Natl Acad Sci U S A 2017 ; 114 : E8885–94. [Google Scholar]
  27. Noskov VN, Segall-Shapiro TH, Chuang R-Y. Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast. Nucleic Acids Res 2010 ; 38 : 2570–6. [CrossRef] [PubMed] [Google Scholar]
  28. Chandran S, Noskov VN, Segall-Shapiro TH, et al. TREC-IN: gene knock-in genetic tool for genomes cloned in yeast. BMC Genomics 2014 ; 15 : 1180. [CrossRef] [PubMed] [Google Scholar]
  29. Tsarmpopoulos I, Gourgues G, Blanchard A, et al. In-yeast engineering of a bacterial genome using CRISPR/Cas9. ACS Synth Biol 2016 ; 5 : 104–9. [CrossRef] [PubMed] [Google Scholar]
  30. Baby V, Labroussaa F, Brodeur J, et al. Cloning and transplantation of the Mesoplasma florum genome. ACS Synth Biol 2018 ; 7 : 209–17. [CrossRef] [PubMed] [Google Scholar]
  31. Lartigue C, Glass JI, Alperovich N, et al. Genome transplantation in bacteria: changing one species to another. Science 2007 ; 317 : 632–8. [Google Scholar]
  32. Gibson DG, Benders GA, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 2008 ; 319 : 1215–20. [Google Scholar]
  33. Gibson DG, Benders GA, Axelrod KC, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 2008 ; 105 : 20404–9. [CrossRef] [PubMed] [Google Scholar]
  34. Tully JG, Whitcomb RF, Clark HF, Williamson DL. Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. Science 1977 ; 195 : 892–4. [Google Scholar]
  35. Lartigue C, Blanchard A, Renaudin J, et al. Host specificity of mollicutes oriC plasmids: functional analysis of replication origin. Nucleic Acids Res 2003 ; 31 : 6610–8. [CrossRef] [PubMed] [Google Scholar]
  36. Labroussaa F, Lebaudy A, Baby V, et al. Impact of donor-recipient phylogenetic distance on bacterial genome transplantation. Nucleic Acids Res 2016 ; 44 : 8501–11. [CrossRef] [PubMed] [Google Scholar]
  37. Chambaud I, Wróblewski H, Blanchard A. Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol 1999 ; 7 : 493–9. [Google Scholar]
  38. Sharma S, Tivendale KA, Markham PF, Browning GF. Disruption of the membrane nuclease gene (MBOVPG45_0215) of Mycoplasma bovis greatly reduces cellular nuclease activity. J Bacteriol 2015 ; 197 : 1549–58. [CrossRef] [PubMed] [Google Scholar]
  39. Jarvill-Taylor KJ, VanDyk C, Minion FC. Cloning of mnuA, a membrane nuclease gene of Mycoplasma pulmonis, and analysis of its expression in Escherichia coli . J Bacteriol 1999 ; 181 : 1853–60. [PubMed] [Google Scholar]
  40. Algire MA, Montague MG, Vashee S, et al. A Type III restriction-modification system in Mycoplasma mycoides subsp. capri . Open Biol 2012 ; 2 : 120115. [CrossRef] [PubMed] [Google Scholar]
  41. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010 ; 327 : 167–70. [Google Scholar]
  42. Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013 ; 77 : 53. [CrossRef] [PubMed] [Google Scholar]
  43. Goldfarb T, Sberro H, Weinstock E, et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 2015 ; 34 : 169–83. [PubMed] [Google Scholar]
  44. Ofir G, Melamed S, Sberro H, et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol 2018 ; 3 : 90–8. [CrossRef] [PubMed] [Google Scholar]
  45. Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 2009 ; 4 : 19. [Google Scholar]
  46. Faucher M, Nouvel L-X, Dordet-Frisoni E, et al. Mycoplasmas under experimental antimicrobial selection: The unpredicted contribution of horizontal chromosomal transfer. PLoS Genet 2019 ; 15 : e1007910. [PubMed] [Google Scholar]
  47. Waites KB, Xiao L, Liu Y, et al. Mycoplasma pneumoniae from the respiratory tract and beyond. Clin Microbiol Rev 2017 ; 30 : 747–809. [PubMed] [Google Scholar]
  48. Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med 1944 ; 79 : 137–58. [CrossRef] [PubMed] [Google Scholar]
  49. Schieck E, Lartigue C, Frey J, et al. Galactofuranose in Mycoplasma mycoides is important for membrane integrity and conceals adhesins but does not contribute to serum resistance. Mol Microbiol 2016 ; 99 : 55–70. [CrossRef] [PubMed] [Google Scholar]
  50. Jores J, Ma L, Ssajjakambwe P, Schieck E, et al. Removal of a subset of non-essential genes fully attenuates a highly virulent Mycoplasma strain. Front Microbiol 2019 ; 10 : 664. [CrossRef] [PubMed] [Google Scholar]
  51. Jores J, Schieck E, Liljander A, et al. In vivo role of capsular polysaccharide in Mycoplasma mycoides . J Infect Dis ; 219 : 1559–63. [Google Scholar]
  52. Venetz JE, Del Medico L, Wölfle A, et al. Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality. Proc Natl Acad Sci USA 2019 ; 116 : 8070–9. [CrossRef] [Google Scholar]
  53. Baby V, Labroussaa F, Lartigue C, Rodrigue S. Chromosomes synthétiques : réécrire le code de la vie. Med Sci (Paris) 2019 ; 35 : 753–60. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.