Accès gratuit
Numéro
Med Sci (Paris)
Volume 35, Numéro 10, Octobre 2019
Page(s) 753 - 760
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019153
Publié en ligne 18 octobre 2019
  1. Sekiya T, Takeya T, Brown EL, et al. Total synthesis of a tyrosine suppressor transfer RNA gene XVI. Enzymatic joinings to form the total 207-base pair-long DNA. J Biol Chem 1979 ; 254 : 5787–801. [PubMed] [Google Scholar]
  2. Zhang W, Zhao G, Luo Z, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science 2017 ; 355 : eaaf3981. [Google Scholar]
  3. Hutchison CA III, Chuang R-Y, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science 2016 ; 351 : 1414–26. [Google Scholar]
  4. Palluk S, Arlow DH, De Rond T, et al. De novo DNA synthesis using polymerasenucleotide conjugates. Nat Biotechnol 2018 ; 36 : 645–50. [CrossRef] [PubMed] [Google Scholar]
  5. Kosuri S, Church GM. Large-scale de novo DNA synthesis : Technologies and applications. Nat Methods 2014 ; 11 : 499–507. [CrossRef] [PubMed] [Google Scholar]
  6. Gibson DG, Young L, Chuang R-Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009 ; 6 : 343–5. [CrossRef] [PubMed] [Google Scholar]
  7. Engler C, Kandzia R, Marillonnet S . A one pot, one step, precision cloning method with high throughput capability. PLoS One 2008 ; 3 : e3647. [CrossRef] [PubMed] [Google Scholar]
  8. Gibson DG, Benders GA, Axelrod KC, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 2008 ; 105 : 20404–9. [Google Scholar]
  9. Kuroiwa Y, Tomizuka K, Shinohara T, et al. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol 2000 ; 18 : 1086–90. [Google Scholar]
  10. Gibson DG, Benders GA, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 2008 ; 319 : 1215–20. [Google Scholar]
  11. Lartigue C, Vashee S, Algire MA, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 2009 ; 325 : 1693–6. [Google Scholar]
  12. Lartigue C, Glass JI, Alperovich N, et al. Genome transplantation in bacteria : changing one species to another. Science 2007 ; 317 : 632–8. [Google Scholar]
  13. Karas BJ, Jablanovic J, Irvine E, et al. Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nat Protoc 2014 ; 9 : 743–50. [CrossRef] [PubMed] [Google Scholar]
  14. Cello J, Paul AV, Wimmer E . Chemical synthesis of poliovirus cDNA : Generation of infectious virus in the absence of natural template. Science 2002 ; 297 : 1016–8. [Google Scholar]
  15. Smith HO, Hutchison C a, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly : phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 2003 ; 100 : 15440–5. [CrossRef] [Google Scholar]
  16. Brown M, Lleras R, Mehedi M, et al. Genetic stability of genome-scale deoptimized RNA virus vaccine candidates under selective pressure. Proc Natl Acad Sci USA 2017 ; 114 : E386–95. [CrossRef] [Google Scholar]
  17. Le Nouen C, Luongo C, Yang L, et al. Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization. Proc Natl Acad Sci USA 2014 ; 111 : 13169–74. [CrossRef] [Google Scholar]
  18. Yurovsky A, Mueller S, Ward CB, et al. Large-scale recoding of an arbovirus genome to rebalance its insect versus mammalian preference. Proc Natl Acad Sci USA 2015 ; 112 : 4749–54. [CrossRef] [Google Scholar]
  19. Wimmer E, Paul AV. Synthetic poliovirus and other designer viruses : What have we learned from them? Annu Rev Microbiol 2010 ; 65 : 583–609. [Google Scholar]
  20. Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010 ; 329 : 52–6. [Google Scholar]
  21. Fredens J, Wang K, de la Torre D de, et al. Total synthesis of Escherichia coli with a recoded genome. Nature 2019 ; 569 : 514–8. [CrossRef] [PubMed] [Google Scholar]
  22. Ostrov N, Landon M, Guell M, et al. Design, synthesis, and testing toward a 57-codon genome. Science 2016 ; 353 : 819–22. [Google Scholar]
  23. Reuß DR, Altenbuchner J, Mäder U, et al.. Large-scale reduction of the Bacillus subtilis genome : Consequences for the transcriptional network, resource allocation, and metabolism. Genome Res 2017 ; 27 : 289–99. [CrossRef] [PubMed] [Google Scholar]
  24. Reuß DR, Commichau FM, Gundlach J, et al. The blueprint of a minimal cell : MiniBacillus. Microbiol Mol Biol Rev 2016 ; 80 : 955–87. [CrossRef] [PubMed] [Google Scholar]
  25. Ikeda H, Satoshi KS. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J Ind Microbiol Biotechnol 2014 ; 41 : 233–50. [CrossRef] [PubMed] [Google Scholar]
  26. Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 2010 ; 107 : 2646–51. [CrossRef] [Google Scholar]
  27. Leprince A, De Lorenzo V, Völler P, et al. Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida. Environ Microbiol 2012 ; 14 : 1444–53. [CrossRef] [PubMed] [Google Scholar]
  28. Gibson DG, Smith HO, Hutchison CA, et al. Chemical synthesis of the mouse mitochondrial genome. Nat Methods 2010 ; 7 : 901–3. [CrossRef] [PubMed] [Google Scholar]
  29. Lightowlers RN. Mitochondrial transformation : time for concerted action. EMBO Rep 2011 ; 12 : 480–1. [PubMed] [Google Scholar]
  30. Richardson SM, Mitchell LA, Stracquadanio G, et al. Design of a synthetic yeast genome. Science 2017 ; 355 : 1040–4. [Google Scholar]
  31. Dymond J, Boeke J. The saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng Bugs 2012 ; 3 : 168–71. [PubMed] [Google Scholar]
  32. Dymond JS, Richardson SM, Coombes CE, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 2011 ; 477 : 471–6. [CrossRef] [PubMed] [Google Scholar]
  33. Annaluru N, Muller H, Mitchell LA, et al. Total synthesis of a functional designer eukaryotic chromosome. Science 2014 ; 344 : 55–8. [Google Scholar]
  34. Shen Y, Wang Y, Chen T, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science 2017 ; 355 : eaaf4791. [Google Scholar]
  35. Xie Z-X, Li B-Z, Mitchell LA, et al. “Perfect” designer chromosome V and behavior of a ring derivative. Science 2017 ; 355 : eaaf4704. [Google Scholar]
  36. Mitchell LA, Wang A, Stracquadanio G, et al. Synthesis, debugging, and effects of synthetic chromosome consolidation : synVI and beyond. Science 2017 ; 355 : eaaf4831. [Google Scholar]
  37. Wu Y, Li BZ, Zhao M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science 2017 ; 355 : eaaf4706. [Google Scholar]
  38. Yu W, Han F, Gao Z, et al. Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 2007 ; 104 : 8924–9. [CrossRef] [Google Scholar]
  39. Nelson AD, Lamb JC, Kobrossly PS, et al. Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis. Plant Cell 2011 ; 23 : 2263–72. [Google Scholar]
  40. Teo CH, Ma L, Kapusi E, et al. Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J 2011 ; 68 : 28–39. [CrossRef] [PubMed] [Google Scholar]
  41. Xu C, Cheng Z, Yu W Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation. Plant J 2012 ; 70 : 1070–9. [CrossRef] [PubMed] [Google Scholar]
  42. Kapusi E, Ma L, Teo CH, et al. Telomere-mediated truncation of barley chromosomes. Chromosoma 2012 ; 121 : 181–90. [Google Scholar]
  43. Boehm CR, Bock R. Recent advances and current challenges in synthetic biology of the plastid genetic system and metabolism. Plant Physiol 2019 ; 179 : 794–802. [Google Scholar]
  44. Vafaee Y, Staniek A, Mancheno-Solano M, et al. A modular cloning toolbox for the generation of chloroplast transformation vectors. PLoS One 2014 ; 10 : e110222. [Google Scholar]
  45. Jordan B. HGP-write : après la lecture, l’écriture ? Med/Sci (Paris) 2016 ; 32 : 898–901. [Google Scholar]
  46. Boeke JD, Church GM, Hessel A, et al. GP-write : a grand challenge project to build and test genomes in living cells. http://engineeringbiologycenter.org/wp-content/uploads/2018/08/2018_MeetingSummary.pdf. [Google Scholar]
  47. Jordan B. De HGP-write aux super-cellulesMed/Sci (Paris) 2018 ; 34 : 749–51. [CrossRef] [Google Scholar]
  48. Tumpey TM, Basler CF, Aguilar PV, et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 2005 ; 310 : 77–80. [Google Scholar]
  49. Noyce RS, Lederman S, Evans DH. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One 2018 ; 13 : e0188453. [CrossRef] [PubMed] [Google Scholar]
  50. Jordan B. Bases alternatives et organismes synthétiques. Med/Sci (Paris) 2018 ; 34 : 179–82. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Zhang Y, Lamb BM, Feldman AW, et al. A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc Natl Acad Sci USA 2017 ; 114 : 1317–22. [CrossRef] [Google Scholar]
  52. Tournier JN. L’éradication des maladies infectieuses virales mise en danger par les avancées de la biologie synthétique. Med Sci (Paris) 2019 ; 35 : 181–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. Jordan B. Extension du domaine du codage : l’ADN hachimoji. Med Sci (Paris) 2019 ; 35 : 483–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Stemmer WPC, Crameri A, Ha KD, et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 1995 ; 164(49–53) : 55. [Google Scholar]
  55. Lee YN, Bieniasz PD. Reconstitution of an infectious human endogenous retrovirus. PLOS Pathog 2007 ; 3 : e10. [CrossRef] [PubMed] [Google Scholar]
  56. Becker MM, Graham RL, Donaldson EF, et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc Natl Acad Sci USA 2008 ; 105 : 19944–9. [CrossRef] [Google Scholar]
  57. Nauwelaers D, Van Houtte M, Winters B, et al. A synthetic HIV-1 subtype C bakbone generates comparable PR and RT resistance profiles to a subtype B backbone in a recombinant virus assay. PLOS One 2011 ; 6 : e19643. [CrossRef] [PubMed] [Google Scholar]
  58. Yang R, Han Y, Ye Y, et al. Chemical synthesis of bateriophage G4. PloS One 2011 ; 6 : e27062. [CrossRef] [PubMed] [Google Scholar]
  59. Munshaw S, Bailey JR, Liu L, et al. Computational reconstruction of Bole1a, a representative synthetic hepatitis C virus subtype 1a genome. J Virol 2012 ; 86 : 5915–21. [PubMed] [Google Scholar]
  60. Liu Y, Han Y, Huang W, et al. Whole-genome synthesis and characterization of viable S13-like bacteriophages. PLoS One 2012 ; 7 : e41124. [CrossRef] [PubMed] [Google Scholar]
  61. Scholte FEM, Tas A, Martina BEE, et al. Characterization of synthetic Chikungunya virus based on the consensus sequence of recent E1–226V isolates. PLOS One 2013 ; 8 : e71047. [CrossRef] [PubMed] [Google Scholar]
  62. Cooper B. Proof by synthesis of Tobacco mosaic virus. Genome Res 2014 ; 15 : R67. [Google Scholar]
  63. Lovato A, Faoro F, Gambino G, et al. Construction of a synthetic infectious cDNA clone of Grapevine Algerian latent virus (GALV-Nf) and its biological activity in Nicotiana benthamiana and grapevine plants. Virol J 2014 ; 11 : 186. [CrossRef] [PubMed] [Google Scholar]
  64. Vu HLX, Ma F, Laegreid WW, et al. A synthetic porcine reproductive and respiratory syndrome virus strain confers unprecedented levels of heterologous protection. J Virol 2015 ; 89 : 12070–83. [PubMed] [Google Scholar]
  65. Shang Y, Wang M, Xiao G, et al. Construction and rescue of a functional synthetic baculovirus. ACS Synth Biol 2017 ; 6 : 1393–402. [CrossRef] [PubMed] [Google Scholar]
  66. Labroussaa F, Baby V, Rodrigue S, Lartigue C. La transplantation des génomes : redonner vie à des génomes bactériens naturels ou synthétiques. Med Sci (Paris) 2019 ; 35 : 761–70. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.