Open Access
Issue
Med Sci (Paris)
Volume 35, Number 10, Octobre 2019
Page(s) 761 - 770
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019154
Published online 18 October 2019
  1. Griffith F. The significance of pneumococcal types. J Hyg (Lond) 1928 ; 27 : 113–59. [CrossRef] [PubMed] [Google Scholar]
  2. Puff N. Un modèle avancé de cellule synthétique minimale. Med Sci (Paris) 2012 ; 28 : 139–41. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Noireaux V. Construction de cellules synthétiques. Med Sci (Paris) 2015 ; 31 : 1126–32. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Morowitz HJ, Tourtellotte ME. The smallest living cells. Sci Am 1962 ; 206 : 117–26. [CrossRef] [PubMed] [Google Scholar]
  5. Jordan B. Synthétique, vous avez dit « Synthétique » ? Med Sci (Paris) 2016 ; 32 : 651–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Morowitz HJ. The completeness of molecular biology. Isr J Med Sci 1984 ; 20 : 750–3. [PubMed] [Google Scholar]
  7. Bork P, Ouzounis C, Casari G, et al. Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology. Mol Microbiol 1995 ; 16 : 955–67. [CrossRef] [PubMed] [Google Scholar]
  8. Himmelreich R, Hilbert H, Plagens H, et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae . Nucleic Acids Res 1996 ; 24 : 4420. [CrossRef] [PubMed] [Google Scholar]
  9. Fraser CM, Gocayne JD, White O, et al. The minimal gene complement of Mycoplasma genitalium . Science 1995 ; 270 : 397–403. [Google Scholar]
  10. Porcar M, Danchin A, de Lorenzo V, et al. The ten grand challenges of synthetic life. Syst Synth Biol 2011 ; 5 : 1–9. [Google Scholar]
  11. Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010 ; 329 : 52–6. [Google Scholar]
  12. Hutchison CA, Chuang RY, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science 2016 ; 351 : aad6253. [Google Scholar]
  13. Gibson DG, Young L, Chuang R-Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009 ; 6 : 343–5. [CrossRef] [PubMed] [Google Scholar]
  14. Gibson DG, Smith HO, Hutchison CA, et al. Chemical synthesis of the mouse mitochondrial genome. Nat Methods 2010 ; 7 : 901–3. [CrossRef] [PubMed] [Google Scholar]
  15. Itaya M, Fujita K, Kuroki A, Tsuge K. Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods 2008 ; 5 : 41–3. [CrossRef] [PubMed] [Google Scholar]
  16. Itaya M, Tsuge K, Koizumi M, Fujita K. Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci USA 2005 ; 102 : 15971–6. [CrossRef] [Google Scholar]
  17. Halbedel S, Stülke J. Tools for the genetic analysis of Mycoplasma . Int J Med Microbiol 2007 ; 297 : 37–44. [CrossRef] [PubMed] [Google Scholar]
  18. Lartigue C, Vashee S, Algire MA, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 2009 ; 325 : 1693–6. [Google Scholar]
  19. Benders GA, Noskov VN, Denisova EA, et al. Cloning whole bacterial genomes in yeast. Nucleic Acids Res 2010 ; 38 : 2558–69. [CrossRef] [PubMed] [Google Scholar]
  20. Karas BJ, Tagwerker C, Yonemoto IT, et al. Cloning the Acholeplasma laidlawii PG-8A genome in Saccharomyces cerevisiae as a yeast centromeric plasmid. ACS Synth Biol 2012 ; 1 : 22–8. [CrossRef] [PubMed] [Google Scholar]
  21. Zhou J, Wu R, Xue X, Qin Z. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA. Nucleic Acids Res 2016 ; 44 : e124. [CrossRef] [PubMed] [Google Scholar]
  22. Rideau F, Le Roy C, Descamps ECT, et al. Cloning, stability, and modification of Mycoplasma hominis genome in yeast. ACS Synth Biol 2017 ; 6 : 891–901. [CrossRef] [PubMed] [Google Scholar]
  23. Noskov VN, Karas BJ, Young L, et al. Assembly of large, high G+C Bacterial DNA fragments in yeast. ACS Synth Biol 2012 ; 1 : 267–73. [CrossRef] [PubMed] [Google Scholar]
  24. Tagwerker C, Dupont CL, Karas BJ, et al. Sequence analysis of a complete 1.66 Mb Prochlorococcus marinus MED4 genome cloned in yeast. Nucleic Acids Res 2012 ; 40 : 10375–83. [CrossRef] [PubMed] [Google Scholar]
  25. Vashee S, Stockwell TB, Alperovich N, et al. Cloning, assembly, and modification of the primary human cytomegalovirus isolate toledo by yeast-based transformation-associated recombination. mSphere 2017 ; 2(5) : e00331–17. [Google Scholar]
  26. Oldfield LM, Grzesik P, Voorhies AA, et al. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proc Natl Acad Sci U S A 2017 ; 114 : E8885–94. [Google Scholar]
  27. Noskov VN, Segall-Shapiro TH, Chuang R-Y. Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast. Nucleic Acids Res 2010 ; 38 : 2570–6. [CrossRef] [PubMed] [Google Scholar]
  28. Chandran S, Noskov VN, Segall-Shapiro TH, et al. TREC-IN: gene knock-in genetic tool for genomes cloned in yeast. BMC Genomics 2014 ; 15 : 1180. [CrossRef] [PubMed] [Google Scholar]
  29. Tsarmpopoulos I, Gourgues G, Blanchard A, et al. In-yeast engineering of a bacterial genome using CRISPR/Cas9. ACS Synth Biol 2016 ; 5 : 104–9. [CrossRef] [PubMed] [Google Scholar]
  30. Baby V, Labroussaa F, Brodeur J, et al. Cloning and transplantation of the Mesoplasma florum genome. ACS Synth Biol 2018 ; 7 : 209–17. [CrossRef] [PubMed] [Google Scholar]
  31. Lartigue C, Glass JI, Alperovich N, et al. Genome transplantation in bacteria: changing one species to another. Science 2007 ; 317 : 632–8. [Google Scholar]
  32. Gibson DG, Benders GA, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 2008 ; 319 : 1215–20. [Google Scholar]
  33. Gibson DG, Benders GA, Axelrod KC, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 2008 ; 105 : 20404–9. [CrossRef] [PubMed] [Google Scholar]
  34. Tully JG, Whitcomb RF, Clark HF, Williamson DL. Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. Science 1977 ; 195 : 892–4. [Google Scholar]
  35. Lartigue C, Blanchard A, Renaudin J, et al. Host specificity of mollicutes oriC plasmids: functional analysis of replication origin. Nucleic Acids Res 2003 ; 31 : 6610–8. [CrossRef] [PubMed] [Google Scholar]
  36. Labroussaa F, Lebaudy A, Baby V, et al. Impact of donor-recipient phylogenetic distance on bacterial genome transplantation. Nucleic Acids Res 2016 ; 44 : 8501–11. [CrossRef] [PubMed] [Google Scholar]
  37. Chambaud I, Wróblewski H, Blanchard A. Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol 1999 ; 7 : 493–9. [Google Scholar]
  38. Sharma S, Tivendale KA, Markham PF, Browning GF. Disruption of the membrane nuclease gene (MBOVPG45_0215) of Mycoplasma bovis greatly reduces cellular nuclease activity. J Bacteriol 2015 ; 197 : 1549–58. [CrossRef] [PubMed] [Google Scholar]
  39. Jarvill-Taylor KJ, VanDyk C, Minion FC. Cloning of mnuA, a membrane nuclease gene of Mycoplasma pulmonis, and analysis of its expression in Escherichia coli . J Bacteriol 1999 ; 181 : 1853–60. [PubMed] [Google Scholar]
  40. Algire MA, Montague MG, Vashee S, et al. A Type III restriction-modification system in Mycoplasma mycoides subsp. capri . Open Biol 2012 ; 2 : 120115. [CrossRef] [PubMed] [Google Scholar]
  41. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010 ; 327 : 167–70. [Google Scholar]
  42. Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013 ; 77 : 53. [CrossRef] [PubMed] [Google Scholar]
  43. Goldfarb T, Sberro H, Weinstock E, et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 2015 ; 34 : 169–83. [PubMed] [Google Scholar]
  44. Ofir G, Melamed S, Sberro H, et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol 2018 ; 3 : 90–8. [CrossRef] [PubMed] [Google Scholar]
  45. Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 2009 ; 4 : 19. [Google Scholar]
  46. Faucher M, Nouvel L-X, Dordet-Frisoni E, et al. Mycoplasmas under experimental antimicrobial selection: The unpredicted contribution of horizontal chromosomal transfer. PLoS Genet 2019 ; 15 : e1007910. [PubMed] [Google Scholar]
  47. Waites KB, Xiao L, Liu Y, et al. Mycoplasma pneumoniae from the respiratory tract and beyond. Clin Microbiol Rev 2017 ; 30 : 747–809. [PubMed] [Google Scholar]
  48. Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med 1944 ; 79 : 137–58. [CrossRef] [PubMed] [Google Scholar]
  49. Schieck E, Lartigue C, Frey J, et al. Galactofuranose in Mycoplasma mycoides is important for membrane integrity and conceals adhesins but does not contribute to serum resistance. Mol Microbiol 2016 ; 99 : 55–70. [CrossRef] [PubMed] [Google Scholar]
  50. Jores J, Ma L, Ssajjakambwe P, Schieck E, et al. Removal of a subset of non-essential genes fully attenuates a highly virulent Mycoplasma strain. Front Microbiol 2019 ; 10 : 664. [CrossRef] [PubMed] [Google Scholar]
  51. Jores J, Schieck E, Liljander A, et al. In vivo role of capsular polysaccharide in Mycoplasma mycoides . J Infect Dis ; 219 : 1559–63. [Google Scholar]
  52. Venetz JE, Del Medico L, Wölfle A, et al. Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality. Proc Natl Acad Sci USA 2019 ; 116 : 8070–9. [CrossRef] [Google Scholar]
  53. Baby V, Labroussaa F, Lartigue C, Rodrigue S. Chromosomes synthétiques : réécrire le code de la vie. Med Sci (Paris) 2019 ; 35 : 753–60. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.