Free Access
Issue
Med Sci (Paris)
Volume 35, Number 10, Octobre 2019
Page(s) 753 - 760
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019153
Published online 18 October 2019
  1. Sekiya T, Takeya T, Brown EL, et al. Total synthesis of a tyrosine suppressor transfer RNA gene XVI. Enzymatic joinings to form the total 207-base pair-long DNA. J Biol Chem 1979 ; 254 : 5787–801. [PubMed] [Google Scholar]
  2. Zhang W, Zhao G, Luo Z, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science 2017 ; 355 : eaaf3981. [Google Scholar]
  3. Hutchison CA III, Chuang R-Y, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science 2016 ; 351 : 1414–26. [Google Scholar]
  4. Palluk S, Arlow DH, De Rond T, et al. De novo DNA synthesis using polymerasenucleotide conjugates. Nat Biotechnol 2018 ; 36 : 645–50. [CrossRef] [PubMed] [Google Scholar]
  5. Kosuri S, Church GM. Large-scale de novo DNA synthesis : Technologies and applications. Nat Methods 2014 ; 11 : 499–507. [CrossRef] [PubMed] [Google Scholar]
  6. Gibson DG, Young L, Chuang R-Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009 ; 6 : 343–5. [CrossRef] [PubMed] [Google Scholar]
  7. Engler C, Kandzia R, Marillonnet S . A one pot, one step, precision cloning method with high throughput capability. PLoS One 2008 ; 3 : e3647. [CrossRef] [PubMed] [Google Scholar]
  8. Gibson DG, Benders GA, Axelrod KC, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 2008 ; 105 : 20404–9. [Google Scholar]
  9. Kuroiwa Y, Tomizuka K, Shinohara T, et al. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol 2000 ; 18 : 1086–90. [Google Scholar]
  10. Gibson DG, Benders GA, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 2008 ; 319 : 1215–20. [Google Scholar]
  11. Lartigue C, Vashee S, Algire MA, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 2009 ; 325 : 1693–6. [Google Scholar]
  12. Lartigue C, Glass JI, Alperovich N, et al. Genome transplantation in bacteria : changing one species to another. Science 2007 ; 317 : 632–8. [Google Scholar]
  13. Karas BJ, Jablanovic J, Irvine E, et al. Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nat Protoc 2014 ; 9 : 743–50. [CrossRef] [PubMed] [Google Scholar]
  14. Cello J, Paul AV, Wimmer E . Chemical synthesis of poliovirus cDNA : Generation of infectious virus in the absence of natural template. Science 2002 ; 297 : 1016–8. [Google Scholar]
  15. Smith HO, Hutchison C a, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly : phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 2003 ; 100 : 15440–5. [CrossRef] [Google Scholar]
  16. Brown M, Lleras R, Mehedi M, et al. Genetic stability of genome-scale deoptimized RNA virus vaccine candidates under selective pressure. Proc Natl Acad Sci USA 2017 ; 114 : E386–95. [CrossRef] [Google Scholar]
  17. Le Nouen C, Luongo C, Yang L, et al. Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization. Proc Natl Acad Sci USA 2014 ; 111 : 13169–74. [CrossRef] [Google Scholar]
  18. Yurovsky A, Mueller S, Ward CB, et al. Large-scale recoding of an arbovirus genome to rebalance its insect versus mammalian preference. Proc Natl Acad Sci USA 2015 ; 112 : 4749–54. [CrossRef] [Google Scholar]
  19. Wimmer E, Paul AV. Synthetic poliovirus and other designer viruses : What have we learned from them? Annu Rev Microbiol 2010 ; 65 : 583–609. [Google Scholar]
  20. Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010 ; 329 : 52–6. [Google Scholar]
  21. Fredens J, Wang K, de la Torre D de, et al. Total synthesis of Escherichia coli with a recoded genome. Nature 2019 ; 569 : 514–8. [CrossRef] [PubMed] [Google Scholar]
  22. Ostrov N, Landon M, Guell M, et al. Design, synthesis, and testing toward a 57-codon genome. Science 2016 ; 353 : 819–22. [Google Scholar]
  23. Reuß DR, Altenbuchner J, Mäder U, et al.. Large-scale reduction of the Bacillus subtilis genome : Consequences for the transcriptional network, resource allocation, and metabolism. Genome Res 2017 ; 27 : 289–99. [CrossRef] [PubMed] [Google Scholar]
  24. Reuß DR, Commichau FM, Gundlach J, et al. The blueprint of a minimal cell : MiniBacillus. Microbiol Mol Biol Rev 2016 ; 80 : 955–87. [CrossRef] [PubMed] [Google Scholar]
  25. Ikeda H, Satoshi KS. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J Ind Microbiol Biotechnol 2014 ; 41 : 233–50. [CrossRef] [PubMed] [Google Scholar]
  26. Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 2010 ; 107 : 2646–51. [CrossRef] [Google Scholar]
  27. Leprince A, De Lorenzo V, Völler P, et al. Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida. Environ Microbiol 2012 ; 14 : 1444–53. [CrossRef] [PubMed] [Google Scholar]
  28. Gibson DG, Smith HO, Hutchison CA, et al. Chemical synthesis of the mouse mitochondrial genome. Nat Methods 2010 ; 7 : 901–3. [CrossRef] [PubMed] [Google Scholar]
  29. Lightowlers RN. Mitochondrial transformation : time for concerted action. EMBO Rep 2011 ; 12 : 480–1. [PubMed] [Google Scholar]
  30. Richardson SM, Mitchell LA, Stracquadanio G, et al. Design of a synthetic yeast genome. Science 2017 ; 355 : 1040–4. [Google Scholar]
  31. Dymond J, Boeke J. The saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng Bugs 2012 ; 3 : 168–71. [PubMed] [Google Scholar]
  32. Dymond JS, Richardson SM, Coombes CE, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 2011 ; 477 : 471–6. [CrossRef] [PubMed] [Google Scholar]
  33. Annaluru N, Muller H, Mitchell LA, et al. Total synthesis of a functional designer eukaryotic chromosome. Science 2014 ; 344 : 55–8. [Google Scholar]
  34. Shen Y, Wang Y, Chen T, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science 2017 ; 355 : eaaf4791. [Google Scholar]
  35. Xie Z-X, Li B-Z, Mitchell LA, et al. “Perfect” designer chromosome V and behavior of a ring derivative. Science 2017 ; 355 : eaaf4704. [Google Scholar]
  36. Mitchell LA, Wang A, Stracquadanio G, et al. Synthesis, debugging, and effects of synthetic chromosome consolidation : synVI and beyond. Science 2017 ; 355 : eaaf4831. [Google Scholar]
  37. Wu Y, Li BZ, Zhao M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science 2017 ; 355 : eaaf4706. [Google Scholar]
  38. Yu W, Han F, Gao Z, et al. Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 2007 ; 104 : 8924–9. [CrossRef] [Google Scholar]
  39. Nelson AD, Lamb JC, Kobrossly PS, et al. Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis. Plant Cell 2011 ; 23 : 2263–72. [Google Scholar]
  40. Teo CH, Ma L, Kapusi E, et al. Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J 2011 ; 68 : 28–39. [CrossRef] [PubMed] [Google Scholar]
  41. Xu C, Cheng Z, Yu W Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation. Plant J 2012 ; 70 : 1070–9. [CrossRef] [PubMed] [Google Scholar]
  42. Kapusi E, Ma L, Teo CH, et al. Telomere-mediated truncation of barley chromosomes. Chromosoma 2012 ; 121 : 181–90. [Google Scholar]
  43. Boehm CR, Bock R. Recent advances and current challenges in synthetic biology of the plastid genetic system and metabolism. Plant Physiol 2019 ; 179 : 794–802. [Google Scholar]
  44. Vafaee Y, Staniek A, Mancheno-Solano M, et al. A modular cloning toolbox for the generation of chloroplast transformation vectors. PLoS One 2014 ; 10 : e110222. [Google Scholar]
  45. Jordan B. HGP-write : après la lecture, l’écriture ? Med/Sci (Paris) 2016 ; 32 : 898–901. [Google Scholar]
  46. Boeke JD, Church GM, Hessel A, et al. GP-write : a grand challenge project to build and test genomes in living cells. http://engineeringbiologycenter.org/wp-content/uploads/2018/08/2018_MeetingSummary.pdf. [Google Scholar]
  47. Jordan B. De HGP-write aux super-cellulesMed/Sci (Paris) 2018 ; 34 : 749–51. [CrossRef] [Google Scholar]
  48. Tumpey TM, Basler CF, Aguilar PV, et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 2005 ; 310 : 77–80. [Google Scholar]
  49. Noyce RS, Lederman S, Evans DH. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One 2018 ; 13 : e0188453. [CrossRef] [PubMed] [Google Scholar]
  50. Jordan B. Bases alternatives et organismes synthétiques. Med/Sci (Paris) 2018 ; 34 : 179–82. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Zhang Y, Lamb BM, Feldman AW, et al. A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc Natl Acad Sci USA 2017 ; 114 : 1317–22. [CrossRef] [Google Scholar]
  52. Tournier JN. L’éradication des maladies infectieuses virales mise en danger par les avancées de la biologie synthétique. Med Sci (Paris) 2019 ; 35 : 181–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. Jordan B. Extension du domaine du codage : l’ADN hachimoji. Med Sci (Paris) 2019 ; 35 : 483–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Stemmer WPC, Crameri A, Ha KD, et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 1995 ; 164(49–53) : 55. [Google Scholar]
  55. Lee YN, Bieniasz PD. Reconstitution of an infectious human endogenous retrovirus. PLOS Pathog 2007 ; 3 : e10. [CrossRef] [PubMed] [Google Scholar]
  56. Becker MM, Graham RL, Donaldson EF, et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc Natl Acad Sci USA 2008 ; 105 : 19944–9. [CrossRef] [Google Scholar]
  57. Nauwelaers D, Van Houtte M, Winters B, et al. A synthetic HIV-1 subtype C bakbone generates comparable PR and RT resistance profiles to a subtype B backbone in a recombinant virus assay. PLOS One 2011 ; 6 : e19643. [CrossRef] [PubMed] [Google Scholar]
  58. Yang R, Han Y, Ye Y, et al. Chemical synthesis of bateriophage G4. PloS One 2011 ; 6 : e27062. [CrossRef] [PubMed] [Google Scholar]
  59. Munshaw S, Bailey JR, Liu L, et al. Computational reconstruction of Bole1a, a representative synthetic hepatitis C virus subtype 1a genome. J Virol 2012 ; 86 : 5915–21. [PubMed] [Google Scholar]
  60. Liu Y, Han Y, Huang W, et al. Whole-genome synthesis and characterization of viable S13-like bacteriophages. PLoS One 2012 ; 7 : e41124. [CrossRef] [PubMed] [Google Scholar]
  61. Scholte FEM, Tas A, Martina BEE, et al. Characterization of synthetic Chikungunya virus based on the consensus sequence of recent E1–226V isolates. PLOS One 2013 ; 8 : e71047. [CrossRef] [PubMed] [Google Scholar]
  62. Cooper B. Proof by synthesis of Tobacco mosaic virus. Genome Res 2014 ; 15 : R67. [Google Scholar]
  63. Lovato A, Faoro F, Gambino G, et al. Construction of a synthetic infectious cDNA clone of Grapevine Algerian latent virus (GALV-Nf) and its biological activity in Nicotiana benthamiana and grapevine plants. Virol J 2014 ; 11 : 186. [CrossRef] [PubMed] [Google Scholar]
  64. Vu HLX, Ma F, Laegreid WW, et al. A synthetic porcine reproductive and respiratory syndrome virus strain confers unprecedented levels of heterologous protection. J Virol 2015 ; 89 : 12070–83. [PubMed] [Google Scholar]
  65. Shang Y, Wang M, Xiao G, et al. Construction and rescue of a functional synthetic baculovirus. ACS Synth Biol 2017 ; 6 : 1393–402. [CrossRef] [PubMed] [Google Scholar]
  66. Labroussaa F, Baby V, Rodrigue S, Lartigue C. La transplantation des génomes : redonner vie à des génomes bactériens naturels ou synthétiques. Med Sci (Paris) 2019 ; 35 : 761–70. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.