Open Access
Issue
Med Sci (Paris)
Volume 34, Number 12, Décembre 2018
Page(s) 1079 - 1086
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018298
Published online 09 January 2019
  1. Arnold M, Pandeya N, Byrnes G, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol 2015 ; 16 : 36–46. [CrossRef] [PubMed] [Google Scholar]
  2. Verdot C, Torres M, Salanave B, et al. Corpulence des enfants et des adultes en France métropolitaine en 2015. Résultats de l’étude Esteban et évolution depuis 2006. Bull Epidemiol Hebd 2017 ; 13 :234–241. [Google Scholar]
  3. Renehan AG, Zwahlen M, Egger M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer 2015 ; 15 : 484–498. [Google Scholar]
  4. Neuhouser ML, Aragaki AK, Prentice RL, et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the Women’s Health Initiative Randomized Clinical Trials. JAMA Oncol 2015 ; 1 : 611–621. [CrossRef] [PubMed] [Google Scholar]
  5. Chan DSM, Vieira AR, Aune D, et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol 2014 ; 25 : 1901–1914. [CrossRef] [PubMed] [Google Scholar]
  6. Ewertz M, Jensen MB, Gunnarsdóttir KÁ, et al. Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol 2011 ; 29 : 25–31. [CrossRef] [PubMed] [Google Scholar]
  7. Sun H, Zou J, Chen L, et al. Triple-negative breast cancer and its association with obesity. Mol Clin Oncol 2017 ; 7 : 935–942. [PubMed] [Google Scholar]
  8. Bussière C, Sicsic J, Pelletier-Fleury N. The effects of obesity and mobility disability in access to breast and cervical cancer screening in France: results from the National Health and Disability Survey. PLoS One 2014 ; 9 : e104901. [CrossRef] [PubMed] [Google Scholar]
  9. Jiralerspong S, Goodwin PJ. Obesity and breast cancer prognosis: evidence, challenges, and opportunities. J Clin Oncol 2016 ; 34 : 4203–4216. [CrossRef] [PubMed] [Google Scholar]
  10. Laurent V, Nieto L, Valet P, et al. Tissu adipeux et cancer - Une association à haut risque. Med Sci (Paris) 2014 ; 30 : 398–404. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Ouchi N, Parker JL, Lugus JJ, et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011 ; 11 : 85–97. [CrossRef] [PubMed] [Google Scholar]
  12. Giordano A, Smorlesi A, Frontini A, et al. White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol 2014 ; 170 : 159–171. [Google Scholar]
  13. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
  14. Buache E, Rio MC. Le stroma tumoral - Un terreau fertile pour la cellule cancéreuse. Med Sci (Paris) 2014 ; 30 : 385–390. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  15. Dirat B, Bochet L, Dabek M, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 2011 ; 71 : 2455–2465. [Google Scholar]
  16. Duong MN, Geneste A, Fallone F, et al. The fat and the bad: mature adipocytes, key actors in tumor progression and resistance. Oncotarget 2017 ; 8 : 57622–57641. [CrossRef] [PubMed] [Google Scholar]
  17. Fujisaki K, Fujimoto H, Sangai T, et al. Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat 2015 ; 150 : 255–263. [CrossRef] [PubMed] [Google Scholar]
  18. Wang YY, Attané C, Milhas D, et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2017 ; 2 : e87489. [PubMed] [Google Scholar]
  19. Huang CK, Chang PH, Kuo WH, et al. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate. Nat Commun 2017 ; 8 : 14706. [CrossRef] [PubMed] [Google Scholar]
  20. Attané C, Milhas D, Hoy AJ, et al. Metabolic remodeling induced by adipocytes: a new Achilles’heel in invasive breast cancer?. Curr Med Chem 2018 ; 25 : 1. [Google Scholar]
  21. Park J, Morley TS, Kim M, et al. Obesity and cancer–mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 2014 ; 10 : 455–465. [PubMed] [Google Scholar]
  22. Bochet L, Lehuédé C, Dauvillier S, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 2013 ; 73 : 5657–5668. [Google Scholar]
  23. Lengyel E, Makowski L, DiGiovanni J, et al. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer 2018 ; 4 : 374–384. [CrossRef] [PubMed] [Google Scholar]
  24. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017 ; 542 : 177–185. [CrossRef] [PubMed] [Google Scholar]
  25. Iyengar NM, Gucalp A, Dannenberg AJ, et al. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol 2016 ; 34 : 4270–4276. [CrossRef] [PubMed] [Google Scholar]
  26. Vaysse C, Lømo J, Garred Ø, et al. Inflammation of mammary adipose tissue occurs in overweight and obese patients exhibiting early-stage breast cancer. NPJ Breast Cancer 2017 ; 3 : 19. [CrossRef] [PubMed] [Google Scholar]
  27. Arendt LM, McCready J, Keller PJ, et al. Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res 2013 ; 73 : 6080–6093. [Google Scholar]
  28. Kolb R, Phan L, Borcherding N, et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun 2016 ; 7 : 13007. [CrossRef] [PubMed] [Google Scholar]
  29. Quail DF, Olson OC, Bhardwaj P, et al. Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF. Nat Cell Biol 2017 ; 19 : 974–987. [CrossRef] [PubMed] [Google Scholar]
  30. Reggiani F, Labanca V, Mancuso P, et al. Adipose progenitor cell secretion of GM-CSF and MMP9 promotes a stromal and immunological microenvironment that supports breast cancer progression. Cancer Res 2017 ; 77 : 5169–5182. [Google Scholar]
  31. Koru-Sengul T, Santander AM, Miao F, et al. Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crown-like structures associated with lower survival compared to non-black latinas and caucasians. Breast Cancer Res Treat 2016 ; 158 : 113–126. [CrossRef] [PubMed] [Google Scholar]
  32. Mullooly M, Yang HP, Falk RT, et al. Relationship between crown-like structures and sex-steroid hormones in breast adipose tissue and serum among postmenopausal breast cancer patients. Breast Cancer Res 2017 ; 19 : 8. [CrossRef] [PubMed] [Google Scholar]
  33. Zahid H, Subbaramaiah K, Iyengar NM, et al. Leptin regulation of the p53-HIF1α/PKM2-aromatase axis in breast adipose stromal cells: a novel mechanism for the obesity–breast cancer link. Int J Obes (Lond) 2018 ; 42 : 711–720. [CrossRef] [PubMed] [Google Scholar]
  34. Seo BR, Bhardwaj P, Choi S, et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med 2015; 7 : 301ra130. [Google Scholar]
  35. O’Flanagan CH, Rossi EL, McDonell SB, et al. Metabolic reprogramming underlies metastatic potential in an obesity-responsive murine model of metastatic triple negative breast cancer. NPJ Breast Cancer 2017 ; 3 : 26. [CrossRef] [PubMed] [Google Scholar]
  36. Rossi EL, Dunlap SM, Bowers LW, et al. Energy balance modulation impacts epigenetic reprogramming, ERα and ERβ expression, and mammary tumor development in MMTV-neu transgenic mice. Cancer Res 2017 ; 77 : 2500–2511. [Google Scholar]
  37. Schauer DP, Feigelson HS, Koebnick C, et al. Bariatric Surgery and the risk of cancer in a large multisite cohort. Ann Surg 2017 ; 10.1097/SLA.0000000000002525 [Google Scholar]
  38. Winder AA, Kularatna M, MacCormick AD. Does bariatric surgery affect the incidence of breast cancer development?. A systematic review. Obes Surg 2017 ; 27 : 3014–3020. [CrossRef] [Google Scholar]
  39. Rossi EL, de Angel RE, Bowers LW, et al. Obesity-associated alterations in inflammation, epigenetics, and mammary tumor growth persist in formerly obese mice. Cancer Prev Res (Phila) 2016 ; 9 : 339–348. [CrossRef] [PubMed] [Google Scholar]
  40. Kim MJ, Marchand P, Henegar C, et al. Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. Environ Health Perspect 2011 ; 119 : 377–383. [CrossRef] [PubMed] [Google Scholar]
  41. Goodwin PJ. Obesity and breast cancer outcomes: how much evidence is needed to change practice?. J Clin Oncol 2016 ; 34 : 646–648. [CrossRef] [PubMed] [Google Scholar]
  42. Campbell KL, Foster-Schubert KE, Makar KW, et al. Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss. Cancer Prev Res (Phila) 2013 ; 6 : 217–231. [CrossRef] [PubMed] [Google Scholar]
  43. Iyengar NM, Brown KA, Zhou XK, et al. Metabolic obesity, adipose inflammation and elevated breast aromatase in women with normal body mass index. Cancer Prev Res (Phila) 2017 ; 10 : 235–243. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.