Open Access
Issue
Med Sci (Paris)
Volume 34, Number 12, Décembre 2018
Page(s) 1071 - 1078
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018299
Published online 09 January 2019
  1. Aspinall EJ, Couturier E, Faber M, et al. Hepatitis E virus infection in Europe: surveillance and descriptive epidemiology of confirmed cases, 2005 to 2015. Euro Surveill 2017 ; 22. [Google Scholar]
  2. Doceul V, Bagdassarian E, Demange A, et al. Zoonotic Hepatitis E Virus: Classification, animal reservoirs and transmission routes. Viruses 2016 ; 8 : 270. [Google Scholar]
  3. Pavio N, Merbah T, Thébault A. Frequent hepatitis E virus contamination in food containing raw pork liver. France. Emerging Infect Dis 2014 ; 20 : 1925–1927. [CrossRef] [Google Scholar]
  4. Barnaud E, Rogée S, Garry P, et al. Thermal inactivation of infectious hepatitis E virus in experimentally contaminated food. Appl Environ Microbiol 2012 ; 78 : 5153–5159. [Google Scholar]
  5. Kamar N, Izopet J, Pavio N, et al. Hepatitis E virus infection. Nat Rev Dis Primers 2017 ; 3 : 17086. [CrossRef] [PubMed] [Google Scholar]
  6. Pischke S, Hartl J, Pas SD, et al. Hepatitis E virus: Infection beyond the liver?. J Hepatol 2017 ; 66 : 1082–1095. [CrossRef] [PubMed] [Google Scholar]
  7. Purdy MA, Harrison TJ, Jameel S, et al. ICTV virus taxonomy profile: Hepeviridae. J Gen Virol 2017 ; 98 : 2645–2646. [CrossRef] [PubMed] [Google Scholar]
  8. Bradley DW, Krawczynski K, Cook EH, et al. Enterically transmitted non-A, non-B hepatitis: serial passage of disease in cynomolgus macaques and tamarins and recovery of disease-associated 27- to 34-nm virus-like particles. Proc Natl Acad Sci USA 1987 ; 84 : 6277–6281. [CrossRef] [Google Scholar]
  9. Montpellier C, Wychowski C, Sayed IM, et al. Hepatitis E Virus lifecycle and identification of 3 forms of the ORF2 capsid protein. Gastroenterology 2018 ; 154 : 211–23e8. [CrossRef] [PubMed] [Google Scholar]
  10. Parvez MK. The hepatitis E virus nonstructural polyprotein. Future Microbiology 2017; fmb-2017-0016. [PubMed] [Google Scholar]
  11. Kanade GD, Pingale KD, Karpe YA. Activities of thrombin and factor Xa are essential for replication of Hepatitis E Virus and are possibly implicated in ORF1 polyprotein processing. J Virol 2018 ; 92 : 17–15. [Google Scholar]
  12. Guu TSY, Liu Z, Ye Q, et al. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proc Natl Acad Sci USA 2009 ; 106 : 12992–12997. [CrossRef] [Google Scholar]
  13. Yamashita T, Mori Y, Miyazaki N, et al. Biological and immunological characteristics of hepatitis E virus-like particles based on the crystal structure. Proc Natl Acad Sci USA 2009 ; 106 : 12986–12991. [CrossRef] [Google Scholar]
  14. Xing L, Li TC, Mayazaki N, et al. Structure of hepatitis E virion-sized particle reveals an RNA-dependent viral assembly pathway. J Biol Chem 2010 ; 285 : 33175–33183. [CrossRef] [PubMed] [Google Scholar]
  15. Tang X, Yang C, Gu Y, et al. Structural basis for the neutralization and genotype specificity of hepatitis E virus. Proc Natl Acad Sci USA 2011 ; 108 : 10266–10271. [CrossRef] [Google Scholar]
  16. Yin X, Ying D, Lhomme S, et al. Origin, antigenicity, and function of a secreted form of ORF2 in hepatitis E virus infection. Proc Natl Acad Sci USA 2018 ; 3 : 21345–21312. [Google Scholar]
  17. Takahashi M, Yamada K, Hoshino Y, et al. Monoclonal antibodies raised against the ORF3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. Arch Virol 2008 ; 153 : 1703–1713. [CrossRef] [PubMed] [Google Scholar]
  18. Ding Q, Heller B, Capuccino JMV, et al. Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles. Proc Natl Acad Sci U S A 2017 ; 114 : 1147–1152. [CrossRef] [PubMed] [Google Scholar]
  19. Surjit M, Oberoi R, Kumar R, et al. Enhanced 1 microglobulin secretion from Hepatitis E Virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101. J Biol Chem 2006 ; 281 : 8135–8142. [CrossRef] [PubMed] [Google Scholar]
  20. Nagashima S, Takahashi M Jirintai, et al. A PSAP motif in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells. J Gen Virol 2011 ; 92 : 269–278. [CrossRef] [PubMed] [Google Scholar]
  21. Votteler J, Sundquist WI. Virus Budding and the ESCRT Pathway. Cell Host Microbe 2013 ; 14 : 232–241. [CrossRef] [PubMed] [Google Scholar]
  22. Feng Z, Hensley L, McKnight KL, et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 2013 ; 496 : 367–371. [CrossRef] [PubMed] [Google Scholar]
  23. Yin X, Ambardekar C, Lu Y, et al. Distinct entry mechanisms for non-enveloped and quasi-enveloped hepatitis E virus. J Virol 2016 ; 90 : 4232–4242. [PubMed] [Google Scholar]
  24. Yamada K, Takahashi M, Hoshino Y, et al. ORF3 protein of hepatitis E virus is essential for virion release from infected cells. J Gen Virol 2009 ; 90 : 1880–1891. [CrossRef] [PubMed] [Google Scholar]
  25. Shukla P, Nguyen HT, Faulk K, et al. Adaptation of a genotype 3 hepatitis E virus to efficient growth in cell culture depends on an inserted human gene segment acquired by recombination. J Virol 2012 ; 86 : 5697–5707. [PubMed] [Google Scholar]
  26. Feng Z, Lemon SM. Peek-a-boo: membrane hijacking and the pathogenesis of viral hepatitis. Trends in Microbiol 2014 ; 22 : 59–64. [CrossRef] [Google Scholar]
  27. Kalia M, Chandra V, Rahman SA, et al. Heparan sulfate proteoglycans are required for cellular binding of the Hepatitis E Virus ORF2 capsid protein and for viral infection. J Virol 2009 ; 83 : 12714–12724. [PubMed] [Google Scholar]
  28. Kapur N, Thakral D, Durgapal H, et al. Hepatitis E virus enters liver cells through receptor-dependent clathrin-mediated endocytosis. J Viral Hepat 2011 ; 19 : 436–448. [CrossRef] [PubMed] [Google Scholar]
  29. Holla P, Ahmad I, Ahmed Z, et al. Hepatitis E Virus enters liver cells through a Dynamin-2. Clathrin and membrane cholesterol-dependent pathway. Traffic 2015 ; 16 : 398–416. [Google Scholar]
  30. Nimgaonkar I, Ding Q, Schwartz RE, et al. Hepatitis E virus: advances and challenges. Nat Rev Gastroenterol Hepatol 2018 ; 15 : 96–110. [CrossRef] [PubMed] [Google Scholar]
  31. Nagashima S, Jirintai S, Takahashi M, et al. Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies. J Gen Virol 2014 ; 95 : 2166–2175. [CrossRef] [PubMed] [Google Scholar]
  32. Nagashima S, Takahashi M, Jirintai S, et al. Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions. J Gen Virol 2011 ; 92 : 2838–2848. [CrossRef] [PubMed] [Google Scholar]
  33. Emerson SU, Nguyen HT, Torian U, et al. Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif. J Virol 2010 ; 84 : 9059–9069. [PubMed] [Google Scholar]
  34. Emerson SU, Nguyen H, Graff J, et al. In vitro replication of hepatitis E virus (HEV) genomes and of an HEV replicon expressing green fluorescent protein. J Virol 2004 ; 78 : 4838–4846. [PubMed] [Google Scholar]
  35. Lenggenhager D, Gouttenoire J, Malehmir M, et al. Visualization of hepatitis E virus RNA and proteins in the human liver. J Hepatol 2017 ; 67 : 471–479. [CrossRef] [PubMed] [Google Scholar]
  36. Okamoto H.. Culture systems for hepatitis E virus. J Gastroenterol 2012 ; 48 : 147–158. [CrossRef] [PubMed] [Google Scholar]
  37. Tam AW, White R, Yarbough PO, et al. In vitro infection and replication of Hepatitis E Virus in primary cynomolgus macaque hepatocytes. Virology 1997 ; 238 : 94–102. [CrossRef] [PubMed] [Google Scholar]
  38. Oshiro Y, Yasue H, Takahashi K, et al. Mode of swine hepatitis E virus infection and replication in primary human hepatocytes. J Gen Virol 2014 ; 95 : 2677–2682. [CrossRef] [PubMed] [Google Scholar]
  39. Yin X, Li X, Ambardekar C, et al. Hepatitis E virus persists in the presence of a type III interferon response. PLoS Pathog 2017 ; 13 : e1006417. [CrossRef] [PubMed] [Google Scholar]
  40. Wu X, Thi VLD, Liu P, et al. Pan-genotype Hepatitis E Virus replication in stem cell-derived hepatocellular systems. Gastroenterology 2018 ; 154 : 663–674. [CrossRef] [PubMed] [Google Scholar]
  41. Helsen N, Debing Y, Paeshuyse J, et al. Stem cell-derived hepatocytes: A novel model for hepatitis E virus replication. J Hepatol 2016 ; 64 : 565–573. [CrossRef] [PubMed] [Google Scholar]
  42. Izopet J, Kamar N. Hépatite E. De la transmission zoonotique du virus à l’évolution chronique de l’infection chez l’immunodéprimé. Med Sci (Paris) 2008 ; 24 : 1023–1025. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Le Lay S. Carmen Martinez M, Andriantsitohaina R. Vésicules extracellulaires, biomarqueurs et bioeffecteurs du syndrome métabolique. Med Sci (Paris) 2018 ; 34 : 936–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Gilgenkrantz H, Gouttenoire J, Mallet V. Un modèle murin pour une infection chronique méconnue : l’hépatite E !. Med Sci (Paris) 2016 ; 32 : 812–814. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.