Open Access
Issue
Med Sci (Paris)
Volume 34, Number 12, Décembre 2018
Page(s) 1063 - 1070
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018296
Published online 09 January 2019
  1. Veillat V, Spuul P, Daubon T, et al. Podosomes: multipurpose organelles?. Int J Biochem Cell Biol 2015 ; 65 : 52–60. [CrossRef] [PubMed] [Google Scholar]
  2. Rowe RG, Weiss SJ. Breaching the basement membrane: who, when and how?. Trends Cell Biol 2008 ; 18 : 560–574. [Google Scholar]
  3. Labernadie A, Bouissou A, Delobelle P, et al. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat Commun 2014 ; 5 : 5343. [CrossRef] [PubMed] [Google Scholar]
  4. Luxenburg C, Geblinger D, Klein E, et al. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS ONE 2007 ; 2 : e179. [CrossRef] [PubMed] [Google Scholar]
  5. van den Dries K, Meddens MB, de Keijzer S, et al. Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nat Commun 2013 ; 4 : 1412. [CrossRef] [PubMed] [Google Scholar]
  6. Proag A, Bouissou A, Mangeat T, et al. Working together: spatial synchrony in the force and actin dynamics of podosome first neighbors. ACS Nano 2015 ; 9 : 3800–3813. [Google Scholar]
  7. Linder S, Nelson D, Weiss M, Aepfelbacher M. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A 1999 ; 96 : 9648–9653. [CrossRef] [PubMed] [Google Scholar]
  8. Burns S, Thrasher AJ, Blundell MP, et al. Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 2001 ; 98 : 1142–1149. [Google Scholar]
  9. Destaing O, Saltel F, Geminard JC, et al. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 2003 ; 14 : 407–416. [CrossRef] [PubMed] [Google Scholar]
  10. Schachtner H, Calaminus SD, Sinclair A, et al. Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood 2013 ; 121 : 2542–2552. [Google Scholar]
  11. Wiesner C, Faix J, Himmel M, et al. KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface exposure, CD44 shedding, and extracellular matrix degradation in primary macrophages. Blood 2010 ; 116 : 1559–1569. [Google Scholar]
  12. El Azzouzi K, Wiesner C, Linder S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence. J Cell Biol 2016 ; 213 : 109–125. [CrossRef] [PubMed] [Google Scholar]
  13. Saltel F, Daubon T, Juin A, et al. Invadosomes: intriguing structures with promise. Eur J Cell Biol 2011 ; 90 : 100–107. [PubMed] [Google Scholar]
  14. Walde M, Monypenny J, Heintzmann R, et al. Vinculin binding angle in podosomes revealed by high resolution microscopy. PLoS One 2014 ; 9 : e88251. [CrossRef] [PubMed] [Google Scholar]
  15. Cox S, Rosten E, Monypenny J, et al. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 2011 ; 9 : 195–200. [CrossRef] [PubMed] [Google Scholar]
  16. Mersich AT, Miller MR, Chkourko H, Blystone SD. The formin FRL1 (FMNL1) is an essential component of macrophage podosomes. Cytoskeleton (Hoboken) 2010 ; 67 : 573–585. [CrossRef] [PubMed] [Google Scholar]
  17. Panzer L, Trube L, Klose M, et al. The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes. J Cell Sci 2016 ; 129 : 298–313. [Google Scholar]
  18. Bhuwania R, Cornfine S, Fang Z, et al. Supervillin couples myosin-dependent contractility to podosomes and enables their turnover. J Cell Sci 2012 ; 125 : 2300–2314. [Google Scholar]
  19. Cervero P, Wiesner C, Bouissou A, et al. Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat Commun 2018 ; 9 : 515. [CrossRef] [PubMed] [Google Scholar]
  20. Linder S, Higgs H, Hufner K, et al. The polarization defect of Wiskott-Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J Immunol 2000 ; 165 : 221–225. [CrossRef] [PubMed] [Google Scholar]
  21. Akisaka T, Yoshida H, Suzuki R, Takama K. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture. Cell Tissue Res 2008 ; 331 : 625–641. [Google Scholar]
  22. Labernadie A, Thibault C, Vieu C, et al. Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci U S A 2010 ; 107 : 21016–21021. [CrossRef] [PubMed] [Google Scholar]
  23. Bouissou A, Proag A, Bourg N, et al. Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring. ACS Nano 2017 ; 11 : 4028–4040. [Google Scholar]
  24. Burgstaller G, Gimona M. Podosome-mediated matrix resorption and cell motility in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2005 ; 288 : H3001–H3005. [PubMed] [Google Scholar]
  25. Horton MA, Nesbit MA, Helfrich MH. Interaction of osteopontin with osteoclast integrins. Ann N Y Acad Sci 1995 ; 760 : 190–200. [CrossRef] [PubMed] [Google Scholar]
  26. Daubon T, Spuul P, Alonso F, et al. VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. J Cell Sci 2016 ; 129 : 2586–2598. [Google Scholar]
  27. Juin A, Billottet C, Moreau V, et al. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Mol Biol Cell 2012 ; 23 : 297–309. [CrossRef] [PubMed] [Google Scholar]
  28. Spuul P, Chi PY, Billottet C, et al. Microfluidic devices for the study of actin cytoskeleton in constricted environments: Evidence for podosome formation in endothelial cells exposed to a confined environment. Methods 2016 ; 94 : 65–74. [CrossRef] [PubMed] [Google Scholar]
  29. van den Dries K, van Helden SF, te Riet J, et al. Geometry sensing by dendritic cells dictates spatial organization and PGE(2)-induced dissolution of podosomes. Cell Mol Life Sci 2012 ; 69 : 1889–1901. [CrossRef] [PubMed] [Google Scholar]
  30. Gawden-Bone C, Zhou Z, King E, et al. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. J Cell Sci 2010 ; 123 : 1427–1437. [Google Scholar]
  31. Juin A, Planus E, Guillemot F, et al. Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biol Cell 2013 ; 105 : 46–57. [CrossRef] [PubMed] [Google Scholar]
  32. Moreau V, Tatin F, Varon C, Genot E. Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Mol Cell Biol 2003 ; 23 : 6809–6822. [PubMed] [Google Scholar]
  33. Yu CH, Rafiq NB, Krishnasamy A, et al. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 2013 ; 5 : 1456–1468. [CrossRef] [PubMed] [Google Scholar]
  34. Curado F, Spuul P, Egana I, et al. ALK5 and ALK1 play antagonistic roles in transforming growth factor beta-induced podosome formation in aortic endothelial cells. Mol Cell Biol 2014 ; 34 : 4389–4403. [PubMed] [Google Scholar]
  35. Quintavalle M, Elia L, Condorelli G, Courtneidge SA. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol 2010 ; 189 : 13–22. [CrossRef] [PubMed] [Google Scholar]
  36. Spuul P, Daubon T, Pitter B, et al. VEGF-A/Notch-induced podosomes proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis. Cell Rep 2016 ; 17 : 484–500. [CrossRef] [PubMed] [Google Scholar]
  37. VanWinkle WB, Snuggs M, Buja LM. Hypoxia-induced alterations in cytoskeleton coincide with collagenase expression in cultured neonatal rat cardiomyocytes. J Mol Cell Cardiol 1995 ; 27 : 2531–2542. [CrossRef] [PubMed] [Google Scholar]
  38. Mu X, Wang X, Huang W, et al. Circulating exosomes isolated from septic mice induce cardiovascular hyperpermeability through promoting podosome cluster formation. Shock 2018 ; 49 : 429–441. [Google Scholar]
  39. Van Goethem E, Poincloux R, Gauffre F, et al. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol 2010 ; 184 : 1049–1061. [CrossRef] [PubMed] [Google Scholar]
  40. Cougoule C, Van Goethem E, Le Cabec V, et al. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur J Cell Biol 2012 ; 91 : 938–949. [PubMed] [Google Scholar]
  41. Van Goethem E, Guiet R, Balor S, et al. Macrophage podosomes go 3D. Eur J Cell Biol 2011 ; 90 : 224–236. [CrossRef] [PubMed] [Google Scholar]
  42. Le Cabec V, Van Goethem E, Guiet R, Maridonneau-Parini I. La migration des phagocytes : tour d’horizon. Med Sci (Paris) 2011 ; 27 : 1112–1119. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Cougoule C, Le Cabec V, Poincloux R, et al. Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis. Blood 2009 ; 115 : 1444–1452. [Google Scholar]
  44. Verollet C, Le Cabec V, Maridonneau-Parini I. HIV-1 Infection of T Lymphocytes and Macrophages Affects Their Migration via Nef. Front Immunol 2015 ; 6 : 514. [PubMed] [Google Scholar]
  45. Verollet C, Souriant S, Bonnaud E, et al. HIV-1 reprograms the migration of macrophages. Blood 2015 ; 125 : 1611–1622. [Google Scholar]
  46. Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in health and disease. Physiol Rev 2002 ; 82 : 97–130. [Google Scholar]
  47. van Helden SF, Krooshoop DJ, Broers KC, et al. A critical role for prostaglandin E2 in podosome dissolution and induction of high-speed migration during dendritic cell maturation. J Immunol 2006 ; 177 : 1567–1574. [CrossRef] [PubMed] [Google Scholar]
  48. Baranov MV, Ter Beest M, Reinieren-Beeren I, et al. Podosomes of dendritic cells facilitate antigen sampling. J Cell Sci 2014 ; 127 : 1052–1064. [Google Scholar]
  49. Gallop JL, McMahon HT. BAR domains and membrane curvature: bringing your curves to the BAR. Biochem Soc Symp 2005 : 223–231. [CrossRef] [PubMed] [Google Scholar]
  50. Fey T, Schubert KM, Schneider H, et al. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation. FASEB J 2016 ; 30 : 2755–2766. [CrossRef] [PubMed] [Google Scholar]
  51. Osiak AE, Zenner G, Linder S. Subconfluent endothelial cells form podosomes downstream of cytokine and RhoGTPase signaling. Exp Cell Res 2005 ; 307 : 342–353. [CrossRef] [PubMed] [Google Scholar]
  52. Wang J, Taba Y, Pang J, et al. GIT1 mediates VEGF-induced podosome formation in endothelial cells: critical role for PLCgamma. Arterioscler Thromb Vasc Biol 2009 ; 29 : 202–208. [CrossRef] [PubMed] [Google Scholar]
  53. Meddens MB, van den Dries K, Cambi A. Podosomes revealed by advanced bioimaging: what did we learn?. Eur J Cell Biol 2014 ; 93 : 380–387. [PubMed] [Google Scholar]
  54. Proszynski TJ, Gingras J, Valdez G, et al. Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc Natl Acad Sci U S A 2009 ; 106 : 18373–18378. [CrossRef] [PubMed] [Google Scholar]
  55. Chen EH. Invasive podosomes and myoblast fusion. Curr Top Membr 2011 ; 68 : 235–258. [CrossRef] [PubMed] [Google Scholar]
  56. Varon C, Tatin F, Moreau V, et al. Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol 2006 ; 26 : 3582–3594. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.