Open Access
Med Sci (Paris)
Volume 34, Numéro 12, Décembre 2018
Page(s) 1063 - 1070
Section M/S Revues
Publié en ligne 9 janvier 2019
  1. Veillat V, Spuul P, Daubon T, et al. Podosomes: multipurpose organelles?. Int J Biochem Cell Biol 2015 ; 65 : 52–60. [CrossRef] [PubMed] [Google Scholar]
  2. Rowe RG, Weiss SJ. Breaching the basement membrane: who, when and how?. Trends Cell Biol 2008 ; 18 : 560–574. [Google Scholar]
  3. Labernadie A, Bouissou A, Delobelle P, et al. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat Commun 2014 ; 5 : 5343. [CrossRef] [PubMed] [Google Scholar]
  4. Luxenburg C, Geblinger D, Klein E, et al. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS ONE 2007 ; 2 : e179. [CrossRef] [PubMed] [Google Scholar]
  5. van den Dries K, Meddens MB, de Keijzer S, et al. Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nat Commun 2013 ; 4 : 1412. [CrossRef] [PubMed] [Google Scholar]
  6. Proag A, Bouissou A, Mangeat T, et al. Working together: spatial synchrony in the force and actin dynamics of podosome first neighbors. ACS Nano 2015 ; 9 : 3800–3813. [Google Scholar]
  7. Linder S, Nelson D, Weiss M, Aepfelbacher M. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A 1999 ; 96 : 9648–9653. [CrossRef] [PubMed] [Google Scholar]
  8. Burns S, Thrasher AJ, Blundell MP, et al. Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 2001 ; 98 : 1142–1149. [Google Scholar]
  9. Destaing O, Saltel F, Geminard JC, et al. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 2003 ; 14 : 407–416. [CrossRef] [PubMed] [Google Scholar]
  10. Schachtner H, Calaminus SD, Sinclair A, et al. Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood 2013 ; 121 : 2542–2552. [Google Scholar]
  11. Wiesner C, Faix J, Himmel M, et al. KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface exposure, CD44 shedding, and extracellular matrix degradation in primary macrophages. Blood 2010 ; 116 : 1559–1569. [Google Scholar]
  12. El Azzouzi K, Wiesner C, Linder S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence. J Cell Biol 2016 ; 213 : 109–125. [CrossRef] [PubMed] [Google Scholar]
  13. Saltel F, Daubon T, Juin A, et al. Invadosomes: intriguing structures with promise. Eur J Cell Biol 2011 ; 90 : 100–107. [PubMed] [Google Scholar]
  14. Walde M, Monypenny J, Heintzmann R, et al. Vinculin binding angle in podosomes revealed by high resolution microscopy. PLoS One 2014 ; 9 : e88251. [CrossRef] [PubMed] [Google Scholar]
  15. Cox S, Rosten E, Monypenny J, et al. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 2011 ; 9 : 195–200. [CrossRef] [PubMed] [Google Scholar]
  16. Mersich AT, Miller MR, Chkourko H, Blystone SD. The formin FRL1 (FMNL1) is an essential component of macrophage podosomes. Cytoskeleton (Hoboken) 2010 ; 67 : 573–585. [CrossRef] [PubMed] [Google Scholar]
  17. Panzer L, Trube L, Klose M, et al. The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes. J Cell Sci 2016 ; 129 : 298–313. [Google Scholar]
  18. Bhuwania R, Cornfine S, Fang Z, et al. Supervillin couples myosin-dependent contractility to podosomes and enables their turnover. J Cell Sci 2012 ; 125 : 2300–2314. [Google Scholar]
  19. Cervero P, Wiesner C, Bouissou A, et al. Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat Commun 2018 ; 9 : 515. [CrossRef] [PubMed] [Google Scholar]
  20. Linder S, Higgs H, Hufner K, et al. The polarization defect of Wiskott-Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J Immunol 2000 ; 165 : 221–225. [CrossRef] [PubMed] [Google Scholar]
  21. Akisaka T, Yoshida H, Suzuki R, Takama K. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture. Cell Tissue Res 2008 ; 331 : 625–641. [Google Scholar]
  22. Labernadie A, Thibault C, Vieu C, et al. Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci U S A 2010 ; 107 : 21016–21021. [CrossRef] [PubMed] [Google Scholar]
  23. Bouissou A, Proag A, Bourg N, et al. Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring. ACS Nano 2017 ; 11 : 4028–4040. [Google Scholar]
  24. Burgstaller G, Gimona M. Podosome-mediated matrix resorption and cell motility in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2005 ; 288 : H3001–H3005. [Google Scholar]
  25. Horton MA, Nesbit MA, Helfrich MH. Interaction of osteopontin with osteoclast integrins. Ann N Y Acad Sci 1995 ; 760 : 190–200. [CrossRef] [PubMed] [Google Scholar]
  26. Daubon T, Spuul P, Alonso F, et al. VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. J Cell Sci 2016 ; 129 : 2586–2598. [Google Scholar]
  27. Juin A, Billottet C, Moreau V, et al. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Mol Biol Cell 2012 ; 23 : 297–309. [CrossRef] [PubMed] [Google Scholar]
  28. Spuul P, Chi PY, Billottet C, et al. Microfluidic devices for the study of actin cytoskeleton in constricted environments: Evidence for podosome formation in endothelial cells exposed to a confined environment. Methods 2016 ; 94 : 65–74. [CrossRef] [PubMed] [Google Scholar]
  29. van den Dries K, van Helden SF, te Riet J, et al. Geometry sensing by dendritic cells dictates spatial organization and PGE(2)-induced dissolution of podosomes. Cell Mol Life Sci 2012 ; 69 : 1889–1901. [CrossRef] [PubMed] [Google Scholar]
  30. Gawden-Bone C, Zhou Z, King E, et al. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. J Cell Sci 2010 ; 123 : 1427–1437. [Google Scholar]
  31. Juin A, Planus E, Guillemot F, et al. Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biol Cell 2013 ; 105 : 46–57. [CrossRef] [PubMed] [Google Scholar]
  32. Moreau V, Tatin F, Varon C, Genot E. Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Mol Cell Biol 2003 ; 23 : 6809–6822. [Google Scholar]
  33. Yu CH, Rafiq NB, Krishnasamy A, et al. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 2013 ; 5 : 1456–1468. [CrossRef] [PubMed] [Google Scholar]
  34. Curado F, Spuul P, Egana I, et al. ALK5 and ALK1 play antagonistic roles in transforming growth factor beta-induced podosome formation in aortic endothelial cells. Mol Cell Biol 2014 ; 34 : 4389–4403. [Google Scholar]
  35. Quintavalle M, Elia L, Condorelli G, Courtneidge SA. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol 2010 ; 189 : 13–22. [CrossRef] [PubMed] [Google Scholar]
  36. Spuul P, Daubon T, Pitter B, et al. VEGF-A/Notch-induced podosomes proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis. Cell Rep 2016 ; 17 : 484–500. [CrossRef] [PubMed] [Google Scholar]
  37. VanWinkle WB, Snuggs M, Buja LM. Hypoxia-induced alterations in cytoskeleton coincide with collagenase expression in cultured neonatal rat cardiomyocytes. J Mol Cell Cardiol 1995 ; 27 : 2531–2542. [CrossRef] [PubMed] [Google Scholar]
  38. Mu X, Wang X, Huang W, et al. Circulating exosomes isolated from septic mice induce cardiovascular hyperpermeability through promoting podosome cluster formation. Shock 2018 ; 49 : 429–441. [Google Scholar]
  39. Van Goethem E, Poincloux R, Gauffre F, et al. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol 2010 ; 184 : 1049–1061. [CrossRef] [PubMed] [Google Scholar]
  40. Cougoule C, Van Goethem E, Le Cabec V, et al. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur J Cell Biol 2012 ; 91 : 938–949. [PubMed] [Google Scholar]
  41. Van Goethem E, Guiet R, Balor S, et al. Macrophage podosomes go 3D. Eur J Cell Biol 2011 ; 90 : 224–236. [CrossRef] [PubMed] [Google Scholar]
  42. Le Cabec V, Van Goethem E, Guiet R, Maridonneau-Parini I. La migration des phagocytes : tour d’horizon. Med Sci (Paris) 2011 ; 27 : 1112–1119. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Cougoule C, Le Cabec V, Poincloux R, et al. Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis. Blood 2009 ; 115 : 1444–1452. [Google Scholar]
  44. Verollet C, Le Cabec V, Maridonneau-Parini I. HIV-1 Infection of T Lymphocytes and Macrophages Affects Their Migration via Nef. Front Immunol 2015 ; 6 : 514. [Google Scholar]
  45. Verollet C, Souriant S, Bonnaud E, et al. HIV-1 reprograms the migration of macrophages. Blood 2015 ; 125 : 1611–1622. [Google Scholar]
  46. Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in health and disease. Physiol Rev 2002 ; 82 : 97–130. [CrossRef] [PubMed] [Google Scholar]
  47. van Helden SF, Krooshoop DJ, Broers KC, et al. A critical role for prostaglandin E2 in podosome dissolution and induction of high-speed migration during dendritic cell maturation. J Immunol 2006 ; 177 : 1567–1574. [CrossRef] [PubMed] [Google Scholar]
  48. Baranov MV, Ter Beest M, Reinieren-Beeren I, et al. Podosomes of dendritic cells facilitate antigen sampling. J Cell Sci 2014 ; 127 : 1052–1064. [Google Scholar]
  49. Gallop JL, McMahon HT. BAR domains and membrane curvature: bringing your curves to the BAR. Biochem Soc Symp 2005 : 223–231. [CrossRef] [PubMed] [Google Scholar]
  50. Fey T, Schubert KM, Schneider H, et al. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation. FASEB J 2016 ; 30 : 2755–2766. [CrossRef] [PubMed] [Google Scholar]
  51. Osiak AE, Zenner G, Linder S. Subconfluent endothelial cells form podosomes downstream of cytokine and RhoGTPase signaling. Exp Cell Res 2005 ; 307 : 342–353. [CrossRef] [PubMed] [Google Scholar]
  52. Wang J, Taba Y, Pang J, et al. GIT1 mediates VEGF-induced podosome formation in endothelial cells: critical role for PLCgamma. Arterioscler Thromb Vasc Biol 2009 ; 29 : 202–208. [CrossRef] [PubMed] [Google Scholar]
  53. Meddens MB, van den Dries K, Cambi A. Podosomes revealed by advanced bioimaging: what did we learn?. Eur J Cell Biol 2014 ; 93 : 380–387. [PubMed] [Google Scholar]
  54. Proszynski TJ, Gingras J, Valdez G, et al. Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc Natl Acad Sci U S A 2009 ; 106 : 18373–18378. [CrossRef] [PubMed] [Google Scholar]
  55. Chen EH. Invasive podosomes and myoblast fusion. Curr Top Membr 2011 ; 68 : 235–258. [CrossRef] [PubMed] [Google Scholar]
  56. Varon C, Tatin F, Moreau V, et al. Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol 2006 ; 26 : 3582–3594. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.