Open Access
Numéro
Med Sci (Paris)
Volume 34, Numéro 12, Décembre 2018
Page(s) 1071 - 1078
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018299
Publié en ligne 9 janvier 2019
  1. Aspinall EJ, Couturier E, Faber M, et al. Hepatitis E virus infection in Europe: surveillance and descriptive epidemiology of confirmed cases, 2005 to 2015. Euro Surveill 2017 ; 22. [Google Scholar]
  2. Doceul V, Bagdassarian E, Demange A, et al. Zoonotic Hepatitis E Virus: Classification, animal reservoirs and transmission routes. Viruses 2016 ; 8 : 270. [Google Scholar]
  3. Pavio N, Merbah T, Thébault A. Frequent hepatitis E virus contamination in food containing raw pork liver. France. Emerging Infect Dis 2014 ; 20 : 1925–1927. [CrossRef] [Google Scholar]
  4. Barnaud E, Rogée S, Garry P, et al. Thermal inactivation of infectious hepatitis E virus in experimentally contaminated food. Appl Environ Microbiol 2012 ; 78 : 5153–5159. [Google Scholar]
  5. Kamar N, Izopet J, Pavio N, et al. Hepatitis E virus infection. Nat Rev Dis Primers 2017 ; 3 : 17086. [CrossRef] [PubMed] [Google Scholar]
  6. Pischke S, Hartl J, Pas SD, et al. Hepatitis E virus: Infection beyond the liver?. J Hepatol 2017 ; 66 : 1082–1095. [CrossRef] [PubMed] [Google Scholar]
  7. Purdy MA, Harrison TJ, Jameel S, et al. ICTV virus taxonomy profile: Hepeviridae. J Gen Virol 2017 ; 98 : 2645–2646. [CrossRef] [PubMed] [Google Scholar]
  8. Bradley DW, Krawczynski K, Cook EH, et al. Enterically transmitted non-A, non-B hepatitis: serial passage of disease in cynomolgus macaques and tamarins and recovery of disease-associated 27- to 34-nm virus-like particles. Proc Natl Acad Sci USA 1987 ; 84 : 6277–6281. [CrossRef] [Google Scholar]
  9. Montpellier C, Wychowski C, Sayed IM, et al. Hepatitis E Virus lifecycle and identification of 3 forms of the ORF2 capsid protein. Gastroenterology 2018 ; 154 : 211–23e8. [CrossRef] [PubMed] [Google Scholar]
  10. Parvez MK. The hepatitis E virus nonstructural polyprotein. Future Microbiology 2017; fmb-2017-0016. [PubMed] [Google Scholar]
  11. Kanade GD, Pingale KD, Karpe YA. Activities of thrombin and factor Xa are essential for replication of Hepatitis E Virus and are possibly implicated in ORF1 polyprotein processing. J Virol 2018 ; 92 : 17–15. [Google Scholar]
  12. Guu TSY, Liu Z, Ye Q, et al. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proc Natl Acad Sci USA 2009 ; 106 : 12992–12997. [CrossRef] [Google Scholar]
  13. Yamashita T, Mori Y, Miyazaki N, et al. Biological and immunological characteristics of hepatitis E virus-like particles based on the crystal structure. Proc Natl Acad Sci USA 2009 ; 106 : 12986–12991. [CrossRef] [Google Scholar]
  14. Xing L, Li TC, Mayazaki N, et al. Structure of hepatitis E virion-sized particle reveals an RNA-dependent viral assembly pathway. J Biol Chem 2010 ; 285 : 33175–33183. [CrossRef] [PubMed] [Google Scholar]
  15. Tang X, Yang C, Gu Y, et al. Structural basis for the neutralization and genotype specificity of hepatitis E virus. Proc Natl Acad Sci USA 2011 ; 108 : 10266–10271. [CrossRef] [Google Scholar]
  16. Yin X, Ying D, Lhomme S, et al. Origin, antigenicity, and function of a secreted form of ORF2 in hepatitis E virus infection. Proc Natl Acad Sci USA 2018 ; 3 : 21345–21312. [Google Scholar]
  17. Takahashi M, Yamada K, Hoshino Y, et al. Monoclonal antibodies raised against the ORF3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. Arch Virol 2008 ; 153 : 1703–1713. [CrossRef] [PubMed] [Google Scholar]
  18. Ding Q, Heller B, Capuccino JMV, et al. Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles. Proc Natl Acad Sci U S A 2017 ; 114 : 1147–1152. [CrossRef] [PubMed] [Google Scholar]
  19. Surjit M, Oberoi R, Kumar R, et al. Enhanced 1 microglobulin secretion from Hepatitis E Virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101. J Biol Chem 2006 ; 281 : 8135–8142. [CrossRef] [PubMed] [Google Scholar]
  20. Nagashima S, Takahashi M Jirintai, et al. A PSAP motif in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells. J Gen Virol 2011 ; 92 : 269–278. [CrossRef] [PubMed] [Google Scholar]
  21. Votteler J, Sundquist WI. Virus Budding and the ESCRT Pathway. Cell Host Microbe 2013 ; 14 : 232–241. [CrossRef] [PubMed] [Google Scholar]
  22. Feng Z, Hensley L, McKnight KL, et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 2013 ; 496 : 367–371. [CrossRef] [PubMed] [Google Scholar]
  23. Yin X, Ambardekar C, Lu Y, et al. Distinct entry mechanisms for non-enveloped and quasi-enveloped hepatitis E virus. J Virol 2016 ; 90 : 4232–4242. [PubMed] [Google Scholar]
  24. Yamada K, Takahashi M, Hoshino Y, et al. ORF3 protein of hepatitis E virus is essential for virion release from infected cells. J Gen Virol 2009 ; 90 : 1880–1891. [CrossRef] [PubMed] [Google Scholar]
  25. Shukla P, Nguyen HT, Faulk K, et al. Adaptation of a genotype 3 hepatitis E virus to efficient growth in cell culture depends on an inserted human gene segment acquired by recombination. J Virol 2012 ; 86 : 5697–5707. [PubMed] [Google Scholar]
  26. Feng Z, Lemon SM. Peek-a-boo: membrane hijacking and the pathogenesis of viral hepatitis. Trends in Microbiol 2014 ; 22 : 59–64. [CrossRef] [Google Scholar]
  27. Kalia M, Chandra V, Rahman SA, et al. Heparan sulfate proteoglycans are required for cellular binding of the Hepatitis E Virus ORF2 capsid protein and for viral infection. J Virol 2009 ; 83 : 12714–12724. [PubMed] [Google Scholar]
  28. Kapur N, Thakral D, Durgapal H, et al. Hepatitis E virus enters liver cells through receptor-dependent clathrin-mediated endocytosis. J Viral Hepat 2011 ; 19 : 436–448. [CrossRef] [PubMed] [Google Scholar]
  29. Holla P, Ahmad I, Ahmed Z, et al. Hepatitis E Virus enters liver cells through a Dynamin-2. Clathrin and membrane cholesterol-dependent pathway. Traffic 2015 ; 16 : 398–416. [Google Scholar]
  30. Nimgaonkar I, Ding Q, Schwartz RE, et al. Hepatitis E virus: advances and challenges. Nat Rev Gastroenterol Hepatol 2018 ; 15 : 96–110. [CrossRef] [PubMed] [Google Scholar]
  31. Nagashima S, Jirintai S, Takahashi M, et al. Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies. J Gen Virol 2014 ; 95 : 2166–2175. [CrossRef] [PubMed] [Google Scholar]
  32. Nagashima S, Takahashi M, Jirintai S, et al. Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions. J Gen Virol 2011 ; 92 : 2838–2848. [CrossRef] [PubMed] [Google Scholar]
  33. Emerson SU, Nguyen HT, Torian U, et al. Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif. J Virol 2010 ; 84 : 9059–9069. [PubMed] [Google Scholar]
  34. Emerson SU, Nguyen H, Graff J, et al. In vitro replication of hepatitis E virus (HEV) genomes and of an HEV replicon expressing green fluorescent protein. J Virol 2004 ; 78 : 4838–4846. [PubMed] [Google Scholar]
  35. Lenggenhager D, Gouttenoire J, Malehmir M, et al. Visualization of hepatitis E virus RNA and proteins in the human liver. J Hepatol 2017 ; 67 : 471–479. [CrossRef] [PubMed] [Google Scholar]
  36. Okamoto H.. Culture systems for hepatitis E virus. J Gastroenterol 2012 ; 48 : 147–158. [CrossRef] [PubMed] [Google Scholar]
  37. Tam AW, White R, Yarbough PO, et al. In vitro infection and replication of Hepatitis E Virus in primary cynomolgus macaque hepatocytes. Virology 1997 ; 238 : 94–102. [CrossRef] [PubMed] [Google Scholar]
  38. Oshiro Y, Yasue H, Takahashi K, et al. Mode of swine hepatitis E virus infection and replication in primary human hepatocytes. J Gen Virol 2014 ; 95 : 2677–2682. [CrossRef] [PubMed] [Google Scholar]
  39. Yin X, Li X, Ambardekar C, et al. Hepatitis E virus persists in the presence of a type III interferon response. PLoS Pathog 2017 ; 13 : e1006417. [CrossRef] [PubMed] [Google Scholar]
  40. Wu X, Thi VLD, Liu P, et al. Pan-genotype Hepatitis E Virus replication in stem cell-derived hepatocellular systems. Gastroenterology 2018 ; 154 : 663–674. [CrossRef] [PubMed] [Google Scholar]
  41. Helsen N, Debing Y, Paeshuyse J, et al. Stem cell-derived hepatocytes: A novel model for hepatitis E virus replication. J Hepatol 2016 ; 64 : 565–573. [CrossRef] [PubMed] [Google Scholar]
  42. Izopet J, Kamar N. Hépatite E. De la transmission zoonotique du virus à l’évolution chronique de l’infection chez l’immunodéprimé. Med Sci (Paris) 2008 ; 24 : 1023–1025. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Le Lay S. Carmen Martinez M, Andriantsitohaina R. Vésicules extracellulaires, biomarqueurs et bioeffecteurs du syndrome métabolique. Med Sci (Paris) 2018 ; 34 : 936–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Gilgenkrantz H, Gouttenoire J, Mallet V. Un modèle murin pour une infection chronique méconnue : l’hépatite E !. Med Sci (Paris) 2016 ; 32 : 812–814. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.