Open Access
Issue
Med Sci (Paris)
Volume 34, Number 11, Novembre 2018
Page(s) 954 - 962
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018237
Published online 10 December 2018
  1. Stik G, Petit L, Charbord P, et al. Vésicules extracellulaires stromales et régulation des cellules souches et progéniteurs hématopoïétiques. Med Sci (Paris) 2018 ; 34 : 114–116. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Pimkin M, Kossenkov AV, Mishra T, et al. Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Res 2014 ; 24 : 1932–1944. [CrossRef] [PubMed] [Google Scholar]
  3. Pott S, Lieb JD. What are super-enhancers?. Nat Genet 2015 ; 47 : 8–12. [Google Scholar]
  4. Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013 ; 153 : 307–319. [CrossRef] [PubMed] [Google Scholar]
  5. Wilson NK, Foster SD, Wang X, et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 2010 ; 7 : 532–544. [Google Scholar]
  6. Debili N, Vainchenker W. De macro à micro : l’histoire de la plaquette. Med Sci (Paris) 2008 ; 24 : 467–469. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Elagib KE, Racke FK, Mogass M, et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 2003 ; 101 : 4333–4341. [Google Scholar]
  8. Doré LC, Chlon TM, Brown CD, et al. Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis. Blood 2012 ; 119 : 3724–3733. [Google Scholar]
  9. Huang J, Liu X, Li D, et al. Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev Cell 2016 ; 36 : 9–23. [CrossRef] [PubMed] [Google Scholar]
  10. Lemarchandel V, Ghysdael J, Mignotte V, et al. GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression. Mol Cell Biol 1993 ; 13 : 668–676. [Google Scholar]
  11. Fujiwara T, O’Geen H, Keles S, et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell 2009 ; 36 : 667–681. [CrossRef] [PubMed] [Google Scholar]
  12. Tripic T, Deng W, Cheng Y, et al. SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 2009 ; 113 : 2191–2201. [Google Scholar]
  13. Wei Y, Liu S, Lausen J, et al. A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription. Nat Struct Mol Biol 2007 ; 14 : 653–661. [CrossRef] [PubMed] [Google Scholar]
  14. Goardon N, Lambert JA, Rodriguez P, et al. ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J 2006 ; 25 : 357–366. [CrossRef] [PubMed] [Google Scholar]
  15. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016 ; 374 : 2209–2221. [Google Scholar]
  16. Creutzig U, Büchner T, Sauerland MC, et al. Significance of age in acute myeloid leukemia patients younger than 30 years: a common analysis of the pediatric trials AML-BFM 93/98 and the adult trials AMLCG 92/99 and AMLSG HD93/98A. Cancer 2008 ; 112 : 562–571. [CrossRef] [PubMed] [Google Scholar]
  17. Teyssier A-C, Lapillonne H, Pasquet M, et al. Acute megakaryoblastic leukemia (excluding Down syndrome) remains an acute myeloid subgroup with inferior outcome in the French ELAM02 trial. Pediatr Hematol Oncol 2018 ; 34 : 425–427. [Google Scholar]
  18. Roberts I, Izraeli S. Haematopoietic development and leukaemia in Down syndrome. Br J Haematol 2014 ; 167 : 587–599. [CrossRef] [PubMed] [Google Scholar]
  19. Thiollier C, Lopez CK, Gerby B, et al. Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models. J Exp Med 2012 ; 209 : 2017–2031. [CrossRef] [PubMed] [Google Scholar]
  20. de Rooij JDE, Branstetter C, Ma J, et al. Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat Genet 2018 ; 49 : 451–456. [Google Scholar]
  21. Bernard OA, Mercher T. Activation de la voie Notch par OTT-MAL dans les leucémies aiguës mégacaryoblastiques. Med Sci (Paris) 2009 ; 25 : 676–678. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Faber J, Krivtsov AV, Stubbs MC, et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009 ; 113 : 2375–2385. [Google Scholar]
  23. Fischer MA, Moreno-Miralles I, Hunt A, et al. Myeloid translocation gene 16 is required for maintenance of haematopoietic stem cell quiescence. EMBO J 2012 ; 31 : 1494–1505. [PubMed] [Google Scholar]
  24. Hamlett I, Draper J, Strouboulis J, et al. Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood 2008 ; 112 : 2738–2749. [Google Scholar]
  25. Holmfeldt P, Ganuza M, Marathe H, et al. Functional screen identifies regulators of murine hematopoietic stem cell repopulation. J Exp Med 2016 ; 213 : 433–449. [CrossRef] [PubMed] [Google Scholar]
  26. Thirant C, Ignacimouttou C, Lopez CK, et al. ETO2-GLIS2 hijacks transcriptional complexes to drive cellular identity and self-renewal in pediatric acute megakaryoblastic leukemia. Cancer Cell 2018 ; 31 : 452–465. [Google Scholar]
  27. Gröschel S, Sanders MA, Hoogenboezem R, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 2014 ; 157 : 369–381. [CrossRef] [PubMed] [Google Scholar]
  28. Carmichael CL, Metcalf D, Henley KJ, et al. Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythro-megakaryocytic leukemia. Proc Natl Acad Sci U S A 2012 ; 109 : 15437–15442. [CrossRef] [PubMed] [Google Scholar]
  29. Kruse EA, Loughran SJ, Baldwin TM, et al. Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc Natl Acad Sci U S A 2009 ; 106 : 13814–13819. [CrossRef] [PubMed] [Google Scholar]
  30. Wenge DV, Felipe-Fumero E, Angenendt L, et al. MN1-Fli1 oncofusion transforms murine hematopoietic progenitor cells into acute megakaryoblastic leukemia cells. Oncogenesis 2015 ; 4 : e179. [CrossRef] [PubMed] [Google Scholar]
  31. Mazumdar C, Shen Y, Xavy S, et al. Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation. Cell Stem Cell 2015 ; 17 : 675–688. [Google Scholar]
  32. Huang Y, Thoms J a. I, Tursky ML, et al. MAPK/ERK2 phosphorylates ERG at serine 283 in leukemic cells and promotes stem cell signatures and cell proliferation. Leukemia 2016; 30 : 1552–61. [CrossRef] [PubMed] [Google Scholar]
  33. Stankiewicz MJ, Crispino JD. ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells. Blood 2009 ; 113 : 3337–3347. [Google Scholar]
  34. Dang J, Nance S, Ma J, et al. AMKL chimeric transcription factors are potent inducers of leukemia. Leukemia 2018 ; 31 : 2228–2234. [Google Scholar]
  35. Magnusson M, Brun ACM, Miyake N, et al. HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood 2007 ; 109 : 3687–3696. [Google Scholar]
  36. Kadri Z, Shimizu R, Ohneda O, et al. Direct binding of pRb/E2F-2 to GATA-1 regulates maturation and terminal cell division during erythropoiesis. PLoS Biol 2009 ; 7 : e1000123. [CrossRef] [PubMed] [Google Scholar]
  37. Wichmann C, Becker Y, Chen-Wichmann L, et al. Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity. Blood 2010 ; 116 : 603–613. [Google Scholar]
  38. Shima H, Takamatsu-Ichihara E, Shino M, et al. Ring1A and Ring1B inhibit expression of Glis2 to maintain murine MOZ-TIF2 AML stem cells. Blood 2018 ; 131 : 1833–1845. [Google Scholar]
  39. Hara Y, Shiba N, Ohki K, et al. Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-Down syndrome. Genes Chromosomes Cancer 2018 ; 56 : 394–404. [Google Scholar]
  40. Drexler HG. Guide to Leukemia-Lymphoma Cell Lines 2005 ; Braunschweig, Germany, German Collection of Microorganisms and Cell Cultures [Google Scholar]
  41. Walters DK, Mercher T, Gu T-L, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006 ; 10 : 65–75. [CrossRef] [PubMed] [Google Scholar]
  42. Saida S, Watanabe K, Sato-Otsubo A, et al. Clonal selection in xenografted TAM recapitulates the evolutionary process of myeloid leukemia in Down syndrome. Blood 2013 ; 121 : 4377–4387. [Google Scholar]
  43. Chou ST, Byrska-Bishop M, Tober JM, et al. Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012 ; 109 : 17573–17578. [CrossRef] [PubMed] [Google Scholar]
  44. Alford KA, Slender A, Vanes L, et al. Perturbed hematopoiesis in the Tc1 mouse model of Down syndrome. Blood 2010 ; 115 : 2928–2937. [Google Scholar]
  45. Byrska-Bishop M, VanDorn D, Campbell AE, et al. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest 2015 ; 125 : 993–1005. [CrossRef] [PubMed] [Google Scholar]
  46. Malinge S, Bliss-Moreau M, Kirsammer G, et al. Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. J Clin Invest 2012 ; 122 : 948–962. [CrossRef] [PubMed] [Google Scholar]
  47. Ayllón V, Vogel-González M, González-Pozas F, et al. New hPSC-based human models to study pediatric Acute Megakaryoblastic Leukemia harboring the fusion oncogene RBM15-MKL1. Stem Cell Res 2018 ; 19 : 1–5. [Google Scholar]
  48. Gruber TA, Larson Gedman A, Zhang J, et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 2012 ; 22 : 683–697. [CrossRef] [PubMed] [Google Scholar]
  49. Cardin S, Laramee L, MacRae T, et al. Modeling of pediatric acute megakaryoblastic leukemia using cord blood stem/progenitor cells. Blood 2016 ; 128 : 1535. [Google Scholar]
  50. Mercher T, Wernig G, Moore SA, et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 2006 ; 108 : 2770–2779. [Google Scholar]
  51. Salvatore NB, Cambot M, Lopez CK, et al. The ETO2-GLIS2 fusion oncogene alters early human hematopoiesis in an induced pluripotent stem cells-derived model of pediatric acute megakaryoblastic leukemia. Blood 2018 ; 130 suppl 1: 2512. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.