Open Access
Numéro |
Med Sci (Paris)
Volume 34, Numéro 11, Novembre 2018
|
|
---|---|---|
Page(s) | 954 - 962 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2018237 | |
Publié en ligne | 10 décembre 2018 |
- Stik G, Petit L, Charbord P, et al. Vésicules extracellulaires stromales et régulation des cellules souches et progéniteurs hématopoïétiques. Med Sci (Paris) 2018 ; 34 : 114–116. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Pimkin M, Kossenkov AV, Mishra T, et al. Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Res 2014 ; 24 : 1932–1944. [CrossRef] [PubMed] [Google Scholar]
- Pott S, Lieb JD. What are super-enhancers?. Nat Genet 2015 ; 47 : 8–12. [Google Scholar]
- Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013 ; 153 : 307–319. [CrossRef] [PubMed] [Google Scholar]
- Wilson NK, Foster SD, Wang X, et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 2010 ; 7 : 532–544. [Google Scholar]
- Debili N, Vainchenker W. De macro à micro : l’histoire de la plaquette. Med Sci (Paris) 2008 ; 24 : 467–469. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Elagib KE, Racke FK, Mogass M, et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 2003 ; 101 : 4333–4341. [Google Scholar]
- Doré LC, Chlon TM, Brown CD, et al. Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis. Blood 2012 ; 119 : 3724–3733. [Google Scholar]
- Huang J, Liu X, Li D, et al. Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev Cell 2016 ; 36 : 9–23. [CrossRef] [PubMed] [Google Scholar]
- Lemarchandel V, Ghysdael J, Mignotte V, et al. GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression. Mol Cell Biol 1993 ; 13 : 668–676. [Google Scholar]
- Fujiwara T, O’Geen H, Keles S, et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell 2009 ; 36 : 667–681. [CrossRef] [PubMed] [Google Scholar]
- Tripic T, Deng W, Cheng Y, et al. SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 2009 ; 113 : 2191–2201. [Google Scholar]
- Wei Y, Liu S, Lausen J, et al. A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription. Nat Struct Mol Biol 2007 ; 14 : 653–661. [CrossRef] [PubMed] [Google Scholar]
- Goardon N, Lambert JA, Rodriguez P, et al. ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J 2006 ; 25 : 357–366. [CrossRef] [PubMed] [Google Scholar]
- Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016 ; 374 : 2209–2221. [Google Scholar]
- Creutzig U, Büchner T, Sauerland MC, et al. Significance of age in acute myeloid leukemia patients younger than 30 years: a common analysis of the pediatric trials AML-BFM 93/98 and the adult trials AMLCG 92/99 and AMLSG HD93/98A. Cancer 2008 ; 112 : 562–571. [CrossRef] [PubMed] [Google Scholar]
- Teyssier A-C, Lapillonne H, Pasquet M, et al. Acute megakaryoblastic leukemia (excluding Down syndrome) remains an acute myeloid subgroup with inferior outcome in the French ELAM02 trial. Pediatr Hematol Oncol 2018 ; 34 : 425–427. [Google Scholar]
- Roberts I, Izraeli S. Haematopoietic development and leukaemia in Down syndrome. Br J Haematol 2014 ; 167 : 587–599. [CrossRef] [PubMed] [Google Scholar]
- Thiollier C, Lopez CK, Gerby B, et al. Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models. J Exp Med 2012 ; 209 : 2017–2031. [CrossRef] [PubMed] [Google Scholar]
- de Rooij JDE, Branstetter C, Ma J, et al. Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat Genet 2018 ; 49 : 451–456. [Google Scholar]
- Bernard OA, Mercher T. Activation de la voie Notch par OTT-MAL dans les leucémies aiguës mégacaryoblastiques. Med Sci (Paris) 2009 ; 25 : 676–678. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Faber J, Krivtsov AV, Stubbs MC, et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009 ; 113 : 2375–2385. [Google Scholar]
- Fischer MA, Moreno-Miralles I, Hunt A, et al. Myeloid translocation gene 16 is required for maintenance of haematopoietic stem cell quiescence. EMBO J 2012 ; 31 : 1494–1505. [PubMed] [Google Scholar]
- Hamlett I, Draper J, Strouboulis J, et al. Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood 2008 ; 112 : 2738–2749. [Google Scholar]
- Holmfeldt P, Ganuza M, Marathe H, et al. Functional screen identifies regulators of murine hematopoietic stem cell repopulation. J Exp Med 2016 ; 213 : 433–449. [CrossRef] [PubMed] [Google Scholar]
- Thirant C, Ignacimouttou C, Lopez CK, et al. ETO2-GLIS2 hijacks transcriptional complexes to drive cellular identity and self-renewal in pediatric acute megakaryoblastic leukemia. Cancer Cell 2018 ; 31 : 452–465. [Google Scholar]
- Gröschel S, Sanders MA, Hoogenboezem R, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 2014 ; 157 : 369–381. [CrossRef] [PubMed] [Google Scholar]
- Carmichael CL, Metcalf D, Henley KJ, et al. Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythro-megakaryocytic leukemia. Proc Natl Acad Sci U S A 2012 ; 109 : 15437–15442. [CrossRef] [PubMed] [Google Scholar]
- Kruse EA, Loughran SJ, Baldwin TM, et al. Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc Natl Acad Sci U S A 2009 ; 106 : 13814–13819. [CrossRef] [PubMed] [Google Scholar]
- Wenge DV, Felipe-Fumero E, Angenendt L, et al. MN1-Fli1 oncofusion transforms murine hematopoietic progenitor cells into acute megakaryoblastic leukemia cells. Oncogenesis 2015 ; 4 : e179. [CrossRef] [PubMed] [Google Scholar]
- Mazumdar C, Shen Y, Xavy S, et al. Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation. Cell Stem Cell 2015 ; 17 : 675–688. [Google Scholar]
- Huang Y, Thoms J a. I, Tursky ML, et al. MAPK/ERK2 phosphorylates ERG at serine 283 in leukemic cells and promotes stem cell signatures and cell proliferation. Leukemia 2016; 30 : 1552–61. [CrossRef] [PubMed] [Google Scholar]
- Stankiewicz MJ, Crispino JD. ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells. Blood 2009 ; 113 : 3337–3347. [Google Scholar]
- Dang J, Nance S, Ma J, et al. AMKL chimeric transcription factors are potent inducers of leukemia. Leukemia 2018 ; 31 : 2228–2234. [Google Scholar]
- Magnusson M, Brun ACM, Miyake N, et al. HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood 2007 ; 109 : 3687–3696. [Google Scholar]
- Kadri Z, Shimizu R, Ohneda O, et al. Direct binding of pRb/E2F-2 to GATA-1 regulates maturation and terminal cell division during erythropoiesis. PLoS Biol 2009 ; 7 : e1000123. [CrossRef] [PubMed] [Google Scholar]
- Wichmann C, Becker Y, Chen-Wichmann L, et al. Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity. Blood 2010 ; 116 : 603–613. [Google Scholar]
- Shima H, Takamatsu-Ichihara E, Shino M, et al. Ring1A and Ring1B inhibit expression of Glis2 to maintain murine MOZ-TIF2 AML stem cells. Blood 2018 ; 131 : 1833–1845. [Google Scholar]
- Hara Y, Shiba N, Ohki K, et al. Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-Down syndrome. Genes Chromosomes Cancer 2018 ; 56 : 394–404. [Google Scholar]
- Drexler HG. Guide to Leukemia-Lymphoma Cell Lines 2005 ; Braunschweig, Germany, German Collection of Microorganisms and Cell Cultures [Google Scholar]
- Walters DK, Mercher T, Gu T-L, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006 ; 10 : 65–75. [CrossRef] [PubMed] [Google Scholar]
- Saida S, Watanabe K, Sato-Otsubo A, et al. Clonal selection in xenografted TAM recapitulates the evolutionary process of myeloid leukemia in Down syndrome. Blood 2013 ; 121 : 4377–4387. [Google Scholar]
- Chou ST, Byrska-Bishop M, Tober JM, et al. Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012 ; 109 : 17573–17578. [CrossRef] [PubMed] [Google Scholar]
- Alford KA, Slender A, Vanes L, et al. Perturbed hematopoiesis in the Tc1 mouse model of Down syndrome. Blood 2010 ; 115 : 2928–2937. [Google Scholar]
- Byrska-Bishop M, VanDorn D, Campbell AE, et al. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest 2015 ; 125 : 993–1005. [CrossRef] [PubMed] [Google Scholar]
- Malinge S, Bliss-Moreau M, Kirsammer G, et al. Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. J Clin Invest 2012 ; 122 : 948–962. [CrossRef] [PubMed] [Google Scholar]
- Ayllón V, Vogel-González M, González-Pozas F, et al. New hPSC-based human models to study pediatric Acute Megakaryoblastic Leukemia harboring the fusion oncogene RBM15-MKL1. Stem Cell Res 2018 ; 19 : 1–5. [Google Scholar]
- Gruber TA, Larson Gedman A, Zhang J, et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 2012 ; 22 : 683–697. [CrossRef] [PubMed] [Google Scholar]
- Cardin S, Laramee L, MacRae T, et al. Modeling of pediatric acute megakaryoblastic leukemia using cord blood stem/progenitor cells. Blood 2016 ; 128 : 1535. [Google Scholar]
- Mercher T, Wernig G, Moore SA, et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 2006 ; 108 : 2770–2779. [Google Scholar]
- Salvatore NB, Cambot M, Lopez CK, et al. The ETO2-GLIS2 fusion oncogene alters early human hematopoiesis in an induced pluripotent stem cells-derived model of pediatric acute megakaryoblastic leukemia. Blood 2018 ; 130 suppl 1: 2512. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.