Open Access
Numéro
Med Sci (Paris)
Volume 34, Numéro 11, Novembre 2018
Page(s) 944 - 953
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018240
Publié en ligne 10 décembre 2018
  1. Gardner RL, Rossant J. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 1979 ; 52 : 141–152. [PubMed] [Google Scholar]
  2. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981 ; 292 : 154–156. [CrossRef] [PubMed] [Google Scholar]
  3. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981 ; 78 : 7634–7638. [CrossRef] [PubMed] [Google Scholar]
  4. Savatier P, Osteil P, Tam PP. Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff. Stem Cell Res 2017; 19 : 104–12. [Google Scholar]
  5. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003 ; 115 : 281–292. [CrossRef] [PubMed] [Google Scholar]
  6. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998 ; 12 : 2048–2060. [CrossRef] [PubMed] [Google Scholar]
  7. Paling NR, Wheadon H, Bone HK, Welham MJ. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signalling. J Biol Chem 2004 ; 279 : 48063–48070. [CrossRef] [PubMed] [Google Scholar]
  8. Tamm C, Bower N, Anneren C. Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. J Cell Sci 2011 ; 124 : 1136–1144. [Google Scholar]
  9. Martello G, Smith A. The nature of embryonic stem cells. Annu Rev Cell Dev Biol 2014 ; 30 : 647–675. [Google Scholar]
  10. Dunn SJ, Martello G, Yordanov B, et al. Defining an essential transcription factor program for naive pluripotency. Science 2014 ; 344 : 1156–1160. [Google Scholar]
  11. Ying QL, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal. Nature 2008 ; 453 : 519–523. [CrossRef] [PubMed] [Google Scholar]
  12. Beddington RS, Robertson EJ. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 1989 ; 105 : 733–737. [PubMed] [Google Scholar]
  13. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell 2009 ; 4 : 487–492. [Google Scholar]
  14. Boroviak T, Loos R, Bertone P, et al. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 2014 ; 16 : 516–528. [CrossRef] [PubMed] [Google Scholar]
  15. Saitou M, Miyauchi H. Gametogenesis from Pluripotent Stem Cells. Cell Stem Cell 2016 ; 18 : 721–735. [Google Scholar]
  16. Nichols J, Chambers I, Taga T, Smith A. Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development 2001 ; 128 : 2333–2339. [PubMed] [Google Scholar]
  17. Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci U S A 1997 ; 94 : 5709–5712. [CrossRef] [PubMed] [Google Scholar]
  18. Brons IG, Smithers LE, Trotter MW, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007 ; 448 : 191–195. [CrossRef] [PubMed] [Google Scholar]
  19. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007 ; 448 : 196–199. [CrossRef] [PubMed] [Google Scholar]
  20. Kojima Y, Kaufman-Francis K, Studdert JB, et al. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 2013 ; 14 : 107–120. [CrossRef] [Google Scholar]
  21. Ficz G, Hore TA, Santos F, et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 2013 ; 13 : 351–359. [CrossRef] [Google Scholar]
  22. Guo G, Yang J, Nichols J, et al. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 2009 ; 136 : 1063–1069. [CrossRef] [PubMed] [Google Scholar]
  23. Huang Y, Osorno R, Tsakiridis A, Wilson V. In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell reports 2012 ; 2 : 1571–1578. [CrossRef] [PubMed] [Google Scholar]
  24. Wu J, Okamura D, Li M, et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature 2015 ; 521 : 316–321. [CrossRef] [PubMed] [Google Scholar]
  25. Osteil P, Studdert J, Wilkie E, et al. Generation of genome-edited mouse epiblast stem cells via a detour through ES cell-chimeras. Differentiation 2016 ; 91 : 119–125. [CrossRef] [PubMed] [Google Scholar]
  26. Hayashi K, Ohta H, Kurimoto K, et al. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011 ; 146 : 519–532. [CrossRef] [PubMed] [Google Scholar]
  27. Tsukiyama T, Ohinata Y. A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice. PLoS ONE 2014 ; 9 : e95329. [CrossRef] [PubMed] [Google Scholar]
  28. Kim H, Wu J, Ye S, et al. Modulation of beta-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun 2013 ; 4 : 2403. [CrossRef] [PubMed] [Google Scholar]
  29. Kurek D, Neagu A, Tastemel M, et al. Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells. Stem cell reports 2015 ; 4 : 114–128. [CrossRef] [PubMed] [Google Scholar]
  30. Joo JY, Choi HW, Kim MJ, et al. Establishment of a primed pluripotent epiblast stem cell in FGF4-based conditions. Sci Rep 2014 ; 4 : 7477. [CrossRef] [PubMed] [Google Scholar]
  31. Kalkan T, Olova N, Roode M, et al. Tracking the embryonic stem cell transition from ground state pluripotency. Development 2018 ; 144 : 1221–1234. [CrossRef] [Google Scholar]
  32. Smith A.. Formative pluripotency: the executive phase in a developmental continuum. Development 2018 ; 144 : 365–373. [CrossRef] [Google Scholar]
  33. Han DW, Tapia N, Joo JY, et al. Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages. Cell 2010 ; 143 : 617–627. [CrossRef] [PubMed] [Google Scholar]
  34. Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 2005 ; 118 : 4495–4509. [CrossRef] [Google Scholar]
  35. Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006 ; 24 : 185–187. [CrossRef] [PubMed] [Google Scholar]
  36. Daheron L, Opitz SL, Zaehres H, et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 2004 ; 22 : 770–778. [CrossRef] [PubMed] [Google Scholar]
  37. Takashima Y, Guo G, Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 2014 ; 158 : 1254–1269. [CrossRef] [PubMed] [Google Scholar]
  38. Chen H, Aksoy I, Gonnot F, et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naïve-like pluripotency. Nat Commun 2015 ; 6 : 7095–7112. [CrossRef] [PubMed] [Google Scholar]
  39. Sperber H, Mathieu J, Wang Y, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 2015 ; 17 : 1523–1535. [CrossRef] [PubMed] [Google Scholar]
  40. Rada-Iglesias A, Bajpai R, Swigut T, et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 2010 ; 470 : 279–283. [CrossRef] [PubMed] [Google Scholar]
  41. Nakamura T, Okamoto I, Sasaki K, et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 2016 ; 537 : 57–62. [CrossRef] [PubMed] [Google Scholar]
  42. Mascetti VL, Pedersen RA. Human-mouse chimerism validates human stem cell pluripotency. Cell Stem Cell 2016 ; 18 : 67–72. [CrossRef] [Google Scholar]
  43. Masaki H, Kato-Itoh M, Umino A, et al. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Development 2015 ; 142 : 3222–3230. [CrossRef] [PubMed] [Google Scholar]
  44. Guo G, von Meyenn F, Santos F, et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 2016 ; 6 : 437–446. [CrossRef] [PubMed] [Google Scholar]
  45. Huang K, Maruyama T, Fan G. The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell 2014 ; 15 : 410–415. [CrossRef] [Google Scholar]
  46. Manor YS, Massarwa R, Hanna JH. Establishing the human naive pluripotent state. Curr Opin Genet Dev 2015 ; 34 : 35–45. [CrossRef] [PubMed] [Google Scholar]
  47. Weinberger L, Ayyash M, Novershtern N, Hanna JH. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 2016 ; 17 : 155–169. [CrossRef] [PubMed] [Google Scholar]
  48. Warrier S, Van der Jeught M, Duggal G, et al. Direct comparison of distinct naive pluripotent states in human embryonic stem cells. Nat Commun 2018 ; 8 : 15055. [CrossRef] [Google Scholar]
  49. Collier AJ, Rugg-Gunn PJ. Identifying human naive pluripotent stem cells - Evaluating state-specific reporter lines and cell-surface markers. Bioessays 2018 : e1700239. [CrossRef] [PubMed] [Google Scholar]
  50. Boroviak T, Nichols J. Primate embryogenesis predicts the hallmarks of human naive pluripotency. Development 2018 ; 144 : 175–186. [CrossRef] [Google Scholar]
  51. Petropoulos S, Edsgard D, Reinius B, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 2016 ; 165 : 1012–1026. [CrossRef] [PubMed] [Google Scholar]
  52. Funk WD, Labat I, Sampathkumar J, et al. Evaluating the genomic and sequence integrity of human ES cell lines; comparison to normal genomes. Stem Cell Res 2012 ; 8 : 154–164. [CrossRef] [Google Scholar]
  53. Na J, Baker D, Zhang J, et al. Aneuploidy in pluripotent stem cells and implications for cancerous transformation. Protein Cell 2014 ; 5 : 569–579. [CrossRef] [PubMed] [Google Scholar]
  54. Masaki H, Nakauchi H. Interspecies chimeras for human stem cell research. Development 2018 ; 144 : 2544–2547. [Google Scholar]
  55. Wu J, Greely HT, Jaenisch R, et al. Stem cells and interspecies chimaeras. Nature 2016 ; 540 : 51–59. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.