Open Access
Med Sci (Paris)
Volume 34, Numéro 11, Novembre 2018
Page(s) 936 - 943
Section M/S Revues
Publié en ligne 10 décembre 2018
  1. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018 ; 19 : (4) 213–228. [CrossRef] [PubMed] [Google Scholar]
  2. van Niel G, Charrin S, Simoes S, et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 2011 ; 21 : 708–721. [CrossRef] [PubMed] [Google Scholar]
  3. Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 2018 ; 9 : 95–106. [CrossRef] [PubMed] [Google Scholar]
  4. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009 ; 9 : 581–593. [CrossRef] [PubMed] [Google Scholar]
  5. Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM. Membrane microparticles: two sides of the coin. Physiology (Bethesda) 2005 ; 20 : 22–27. [PubMed] [Google Scholar]
  6. Boulanger CM, Loyer X, Rautou PE, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 2018 ; 14 : 259–272. [CrossRef] [PubMed] [Google Scholar]
  7. Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res 2018 ; 120 : 1632–1648. [Google Scholar]
  8. Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 2016 ; 113 : E968–E977. [CrossRef] [PubMed] [Google Scholar]
  9. Durcin M, Fleury A, Taillebois E, et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles 2018 ; 6 : 1305677. [Google Scholar]
  10. Kim DK, Kang B, Kim OY, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles 2013; 2. [Google Scholar]
  11. Bolukbasi MF, Mizrak A, Ozdener GB, et al. miR-1289 and “Zipcode”-like sequence enrich mrnas in microvesicles. Mol Ther Nucleic Acids 2012 ; 1 : e10. [CrossRef] [PubMed] [Google Scholar]
  12. Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012 ; 119 : 756–766. [Google Scholar]
  13. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014; 3. [Google Scholar]
  14. Vernay M, Salanave B, de Peretti C, et al. Metabolic syndrome and socioeconomic status in France: The French Nutrition and Health Survey (ENNS, 2006–2007). Int J Public Health 2013 ; 58 : 855–864. [CrossRef] [PubMed] [Google Scholar]
  15. Cancello R, Tordjman J, Poitou C, et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 2006 ; 55 : 1554–1561. [CrossRef] [PubMed] [Google Scholar]
  16. Stepanian A, Bourguignat L, Hennou S, et al. Microparticle increase in severe obesity: Not related to metabolic syndrome and unchanged after massive weight loss. Obesity (Silver Spring) 2013 ; 21 : 11 2236–2243. [Google Scholar]
  17. Nemes K, Aberg F. Interpreting lipoproteins in nonalcoholic fatty liver disease. Curr Opin Lipidol 2018 ; 28 : 355–360. [Google Scholar]
  18. Ousmaal Mel F, Martinez MC, Andriantsitohaina R, et al. Increased monocyte/neutrophil and pro-coagulant microparticle levels and overexpression of aortic endothelial caveolin-1beta in dyslipidemic sand rat, Psammomys obesus. J Diabetes Complications 2016; 30 : 21–9. [CrossRef] [PubMed] [Google Scholar]
  19. Zu L, Ren C, Pan B, et al. Endothelial microparticles after antihypertensive and lipid-lowering therapy inhibit the adhesion of monocytes to endothelial cells. Int J Cardiol 2016 ; 202 : 756–759. [CrossRef] [PubMed] [Google Scholar]
  20. Yvan-Charvet L, Quignard-Boulange A. Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney international 2011 ; 79 : 162–168. [CrossRef] [PubMed] [Google Scholar]
  21. Lopez Andres N, Tesse A, Regnault V, et al. Increased microparticle production and impaired microvascular endothelial function in aldosterone-salt-treated rats: protective effects of polyphenols. PLoS One 2012; 7 : e39235. [CrossRef] [PubMed] [Google Scholar]
  22. Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2012 ; 32 : 2052–2059. [CrossRef] [PubMed] [Google Scholar]
  23. Li S, Wei J, Zhang C, et al. Cell-derived microparticles in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Cell Physiol Biochem 2016 ; 39 : 2439–2450. [CrossRef] [PubMed] [Google Scholar]
  24. Botha J, Velling Magnussen L, Nielsen MH, et al. Microvesicles correlated with components of metabolic syndrome in men with type 2 diabetes mellitus and lowered testosterone levels but were unaltered by testosterone therapy. J Diabetes Res 2018 ; 2017 : 4257875. [Google Scholar]
  25. Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 2008 ; 173 : 1210–1219. [CrossRef] [PubMed] [Google Scholar]
  26. Helal O, Defoort C, Robert S, et al. Increased levels of microparticles originating from endothelial cells, platelets and erythrocytes in subjects with metabolic syndrome: relationship with oxidative stress. Nutr Metab Cardiovasc Dis 2011 ; 21 : 665–671. [CrossRef] [PubMed] [Google Scholar]
  27. Diamant M, Nieuwland R, Pablo RF, et al. Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 2002 ; 106 : 2442–2447. [CrossRef] [PubMed] [Google Scholar]
  28. Kranendonk ME, de Kleijn DP, Kalkhoven E, et al. Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol 2014 ; 13 : 37. [CrossRef] [PubMed] [Google Scholar]
  29. Safiedeen Z, Rodriguez-Gomez I, Vergori L, et al. Temporal cross talk between endoplasmic reticulum and mitochondria regulates oxidative stress and mediates microparticle-induced endothelial dysfunction. Antioxid Redox Signal 2018 ; 26 : 15–27. [Google Scholar]
  30. Agouni A, Ducluzeau PH, Benameur T, et al. Microparticles from patients with metabolic syndrome induce vascular hypo-reactivity via Fas/Fas-ligand pathway in mice. PLoS One 2011 ; 6 : e27809. [CrossRef] [PubMed] [Google Scholar]
  31. Burger D, Montezano AC, Nishigaki N, et al. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol 2011 ; 31 : 1898–1907. [CrossRef] [PubMed] [Google Scholar]
  32. Jansen F, Yang X, Franklin BS, et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 2013 ; 98 : 94–106. [CrossRef] [PubMed] [Google Scholar]
  33. Togliatto G, Dentelli P, Gili M, et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond) 2016 ; 40 : 102–111. [CrossRef] [PubMed] [Google Scholar]
  34. Jansen F, Yang X, Hoelscher M, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013 ; 128 : 2026–2038. [CrossRef] [PubMed] [Google Scholar]
  35. Deng ZB, Poliakov A, Hardy RW, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 2009 ; 58 : 2498–2505. [CrossRef] [PubMed] [Google Scholar]
  36. Kranendonk ME, Visseren FL, van Balkom BW, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring) 2014 ; 22 : 1296–1308. [Google Scholar]
  37. Kranendonk ME, Visseren FL, van Herwaarden JA, et al. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity (Silver Spring) 2014 ; 22 : 2216–2223. [Google Scholar]
  38. Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 2018 ; 542 : 450–455. [Google Scholar]
  39. Ying W, Riopel M, Bandyopadhyay G, et al. Adipose tissue macrophage-derived exosomal mirnas can modulate in vivo and in vitro insulin sensitivity. Cell 2018 ; 171 : 372–84 e12. [Google Scholar]
  40. Aswad H, Forterre A, Wiklander OP, et al. Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia 2014 ; 57 : 2155–2164. [CrossRef] [PubMed] [Google Scholar]
  41. Hirsova P, Ibrahim SH, Krishnan A, et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 2016 ; 150 : 956–967. [CrossRef] [PubMed] [Google Scholar]
  42. Koeck ES, Iordanskaia T, Sevilla S, et al. Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J Surg Res 2014 ; 192 : 268–275. [CrossRef] [PubMed] [Google Scholar]
  43. Li L, Wang Z, Hu X, et al. Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2016 ; 479 : 343–350. [Google Scholar]
  44. Osada-Oka M, Shiota M, Izumi Y, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 2018 ; 40 : 353–360. [Google Scholar]
  45. Gao W, Liu H, Yuan J, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. J Cell Mol Med 2016 ; 20 : 2318–2327. [CrossRef] [PubMed] [Google Scholar]
  46. Milbank E, Soleti R, Martinez E, et al. Microparticles from apoptotic RAW 264.7 macrophage cells carry tumour necrosis factor-alpha functionally active on cardiomyocytes from adult mice. J Extracell Vesicles 2015; 4 : 28621. [Google Scholar]
  47. Liu S, da Cunha AP, Rezende RM, et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 2016 ; 19 : 32–43. [CrossRef] [PubMed] [Google Scholar]
  48. Choi Y, Kwon Y, Kim DK, et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Sci Rep 2015 ; 5 : 15878. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.