Open Access
Med Sci (Paris)
Volume 34, Number 11, Novembre 2018
Page(s) 929 - 935
Section M/S Revues
Published online 10 December 2018
  1. Brion JP, Couck AM, Passareiro E, Flament-Durand J. Neurofibrillary tangles of Alzheimer’s disease: an immunohistochemical study. J Submicrosc Cytol 1985 ; 17 : 89–96. [PubMed] [Google Scholar]
  2. Lebouvier T, Pasquier F, Buée L. Update on Tauopathies. Curr Op Neurol 2018 ; 30 : 6 589–598. [CrossRef] [PubMed] [Google Scholar]
  3. Torrent L, Ferrer I. PP2A and Alzheimer disease. Curr Alzheimer Res 2012 ; 9 : 248–256. [CrossRef] [PubMed] [Google Scholar]
  4. Duyckaerts C, Braak H, Brion JP, et al. PART is part of Alzheimer disease. Acta Neuropathol 2015 ; 129 : 5 749–756. [CrossRef] [PubMed] [Google Scholar]
  5. McDuff T, Sumi SM. Subcortical degeneration in Alzheimer’s disease. Neurology 1985 ; 35 : 123–126. [Google Scholar]
  6. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica 1991 ; 82 : 239–259. [Google Scholar]
  7. Havrankova J, Schmechel D, Roth J, Brownstein M. Identification of insulin in rat brain. Proc Natl Acad Sci U S A 1978 ; 75 : 5737–5741. [CrossRef] [PubMed] [Google Scholar]
  8. Young WS, 3rd.. Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 1986 ; 8 : 93–97. [CrossRef] [PubMed] [Google Scholar]
  9. Devaskar SU, Giddings SJ, Rajakumar PA, et al. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem 1994 ; 269 : 8445–8454. [PubMed] [Google Scholar]
  10. Gray SM, Aylor KW, Barrett EJ. Unravelling the regulation of insulin transport across the brain endothelial cell. Diabetologia 2018 ; 60 : 1512–1521. [Google Scholar]
  11. Marks JL, Porte D, Jr., Stahl WL, Baskin DG. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 1990 ; 127 : 3234–3236. [CrossRef] [PubMed] [Google Scholar]
  12. Bruning JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000 ; 289 : 2122–2125. [Google Scholar]
  13. Grillo CA, Tamashiro KL, Piroli GG, et al. Lentivirus-mediated downregulation of hypothalamic insulin receptor expression. Physiol Behav 2007 ; 92 : 691–701. [CrossRef] [PubMed] [Google Scholar]
  14. Loh K, Zhang L, Brandon A, et al. Insulin controls food intake and energy balance via NPY neurons. Mol Metab 2018 ; 6 : 574–584. [Google Scholar]
  15. Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: Its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol 2014 ; 5 : 161. [CrossRef] [Google Scholar]
  16. Moult PR, Harvey J. Hormonal regulation of hippocampal dendritic morphology and synaptic plasticity. Cell Adh Migr 2008 ; 2 : 269–275. [CrossRef] [PubMed] [Google Scholar]
  17. van der Heide LP, Kamal A, Artola A, et al. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 2005 ; 94 : 1158–1166. [CrossRef] [PubMed] [Google Scholar]
  18. Grillo CA, Piroli GG, Lawrence RC, et al. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes 2015 ; 64 : 3927–3936. [CrossRef] [PubMed] [Google Scholar]
  19. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 2012 ; 42 : 484–491. [CrossRef] [PubMed] [Google Scholar]
  20. Benedict C, Hallschmid M, Hatke A, et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology 2004 ; 29 : 1326–1334. [CrossRef] [PubMed] [Google Scholar]
  21. Moloney AM, Griffin RJ, Timmons S, et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 2010 ; 31 : 224–243. [Google Scholar]
  22. Talbot K, Wang HY, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012 ; 122 : 1316–1338. [CrossRef] [PubMed] [Google Scholar]
  23. Guerin O, Andrieu S, Schneider SM, et al. Different modes of weight loss in Alzheimer disease: a prospective study of 395 patients. Am J Clin Nutr 2005 ; 82 : 435–441. [CrossRef] [PubMed] [Google Scholar]
  24. Leboucher A, Laurent C, Fernandez-Gomez FJ, et al. Detrimental effects of diet-induced obesity on tau pathology are independent of insulin resistance in tau transgenic mice. Diabetes 2013 ; 62 : 1681–1688. [CrossRef] [PubMed] [Google Scholar]
  25. Brownlow ML, Benner L, D’Agostino D, et al. Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer’s pathology. PloS one 2013 ; 8 : e75713. [CrossRef] [PubMed] [Google Scholar]
  26. Brownlow ML, Joly-Amado A, Azam S, et al. Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behav Brain Res 2014 ; 271 : 79–88. [CrossRef] [PubMed] [Google Scholar]
  27. Joly-Amado A, Serraneau KS, Brownlow M, et al. Metabolic changes over the course of aging in a mouse model of tau deposition. Neurobiol Aging 2016 ; 44 : 62–73. [Google Scholar]
  28. Wolf-Klein GP, Silverstone FA, Levy AP. Nutritional patterns and weight change in Alzheimer patients. Int Psychogeriatr 1992 ; 4 : 103–118. [CrossRef] [PubMed] [Google Scholar]
  29. Janson J, Laedtke T, Parisi JE, et al. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004 ; 53 : 474–481. [CrossRef] [PubMed] [Google Scholar]
  30. Bucht G, Adolfsson R, Lithner F, Winblad B. Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta Med Scand 1983 ; 213 : 387–392. [Google Scholar]
  31. Fujisawa Y, Sasaki K, Akiyama K. Increased insulin levels after OGTT load in peripheral blood and cerebrospinal fluid of patients with dementia of Alzheimer type. Biol Psychiatry 1991 ; 30 : 1219–1228. [CrossRef] [PubMed] [Google Scholar]
  32. Ma J, Zhang W, Wang HF, et al. Peripheral blood adipokines and insulin levels in patients with Alzheimer’s disease: A replication study and meta-analysis. Curr Alzheimer Res 2016 ; 13 : 223–233. [CrossRef] [PubMed] [Google Scholar]
  33. Zhao WQ, De Felice FG, Fernandez S, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. Faseb J 2008 ; 22 : 246–260. [CrossRef] [PubMed] [Google Scholar]
  34. Bomfim TR, Forny-Germano L, Sathler LB, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Invest 2012 ; 122 : 1339–1353. [CrossRef] [PubMed] [Google Scholar]
  35. Jimenez-Palomares M, Ramos-Rodriguez JJ, Lopez-Acosta JF, et al. Increased Abeta production prompts the onset of glucose intolerance and insulin resistance. Am J Physiol Endocrinol Metab 2012 ; 302 : E1373–E1380. [CrossRef] [PubMed] [Google Scholar]
  36. Vandal M, White PJ, Chevrier G, et al. Age-dependent impairment of glucose tolerance in the 3xTg-AD mouse model of Alzheimer’s disease. Faseb J 2015 ; 29 : 4273–4284. [CrossRef] [PubMed] [Google Scholar]
  37. Clarke JR, Lyra ESNM, Figueiredo CP, et al. Alzheimer-associated Abeta oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 2015 ; 7 : 190–210. [CrossRef] [PubMed] [Google Scholar]
  38. Zhao N, Liu CC, Van Ingelgom AJ, et al. Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron 2018 ; 96 : 115–29 e5. [Google Scholar]
  39. Moloney AM, Griffin RJ, Timmons S, et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 2010 ; 31 : 224–243. [Google Scholar]
  40. Yarchoan M, Toledo JB, Lee EB, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta neuropathol 2014 ; 128 : 679–689. [CrossRef] [PubMed] [Google Scholar]
  41. Marciniak E, Leboucher A, Caron E, et al. Tau deletion promotes brain insulin resistance. J Exp Med 2018 ; 214 : 2257–2269. [Google Scholar]
  42. Ahmed T, Van der Jeugd A, Blum D, et al. Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol Aging 2014 ; 35 : 2474–2478. [Google Scholar]
  43. Biundo F, Del Prete D, Zhang H, et al. A role for tau in learning, memory and synaptic plasticity. Sci Rep 2018 ; 8 : 3184. [CrossRef] [PubMed] [Google Scholar]
  44. Wijesekara N, Goncalves RA, Ahrens R, et al. Tau ablation in mice leads to pancreatic beta cell dysfunction and glucose intolerance. Faseb J 2018 : fj201701352. [Google Scholar]
  45. El Khoury NB, Gratuze M, Papon MA, et al. Insulin dysfunction and Tau pathology. Front Cell Neurosci 2014 ; 8 : 22. [CrossRef] [PubMed] [Google Scholar]
  46. Schubert M, Gautam D, Surjo D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A 2004 ; 101 : 3100–3105. [CrossRef] [PubMed] [Google Scholar]
  47. Schubert M, Brazil DP, Burks DJ, et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 2003 ; 23 : 7084–7092. [CrossRef] [PubMed] [Google Scholar]
  48. Cao B, Rosenblat JD, Brietzke E, et al. Comparative efficacy and acceptability of antidiabetic agents for Alzheimer’s disease and mild cognitive impairment: A systematic review and network meta-analysis. Diabetes Obes Metab 2018 10.1111/dom.13373 [Google Scholar]
  49. Avgerinos KI, Kalaitzidis G, Malli A, et al. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review. J Neurol 2018 10.1007/s00415-018-8768-0 [Google Scholar]
  50. Chapman CD, Schiöth HB, Grillo CA, Benedict C. Intranasal insulin in Alzheimer’s disease: Food for thought. Neuropharmacology 2018; 136(Pt B) : 196–201. [CrossRef] [PubMed] [Google Scholar]
  51. Gejl M, Gjedde A, Egefjord L, et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: Randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci 2016 ; 8 : 108. [CrossRef] [PubMed] [Google Scholar]
  52. Baloyannis SJ, Mavroudis I, Mitilineos D, et al. The hypothalamus in Alzheimer’s disease: a Golgi and electron microscope study. Am J Alzheimers Dis Other Demen. 2015 ; 30 : 478–487. [CrossRef] [PubMed] [Google Scholar]
  53. Swaab DF, Fliers E, Partiman TS. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 1985 ; 342 : 37–44. [CrossRef] [PubMed] [Google Scholar]
  54. Harper DG, Stopa EG, Kuo-Leblanc V, et al. Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain 2008 ; 131 : 1609–1617. [CrossRef] [PubMed] [Google Scholar]
  55. Stevanovic K, Yunus A, Joly-Amado A, et al. Disruption of normal circadian clock function in a mouse model of tauopathy. Exp Neurol 2018 ; 294 : 58–67. [Google Scholar]
  56. Li T, Braunstein KE, Zhang J, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer’s disease mouse model. Nat Commun. 2016 ; 7 : 12082. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.