Open Access
Med Sci (Paris)
Volume 34, Numéro 11, Novembre 2018
Page(s) 929 - 935
Section M/S Revues
Publié en ligne 10 décembre 2018
  1. Brion JP, Couck AM, Passareiro E, Flament-Durand J. Neurofibrillary tangles of Alzheimer’s disease: an immunohistochemical study. J Submicrosc Cytol 1985 ; 17 : 89–96. [PubMed] [Google Scholar]
  2. Lebouvier T, Pasquier F, Buée L. Update on Tauopathies. Curr Op Neurol 2018 ; 30 : 6 589–598. [CrossRef] [PubMed] [Google Scholar]
  3. Torrent L, Ferrer I. PP2A and Alzheimer disease. Curr Alzheimer Res 2012 ; 9 : 248–256. [CrossRef] [PubMed] [Google Scholar]
  4. Duyckaerts C, Braak H, Brion JP, et al. PART is part of Alzheimer disease. Acta Neuropathol 2015 ; 129 : 5 749–756. [CrossRef] [PubMed] [Google Scholar]
  5. McDuff T, Sumi SM. Subcortical degeneration in Alzheimer’s disease. Neurology 1985 ; 35 : 123–126. [CrossRef] [Google Scholar]
  6. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica 1991 ; 82 : 239–259. [CrossRef] [PubMed] [Google Scholar]
  7. Havrankova J, Schmechel D, Roth J, Brownstein M. Identification of insulin in rat brain. Proc Natl Acad Sci U S A 1978 ; 75 : 5737–5741. [CrossRef] [PubMed] [Google Scholar]
  8. Young WS, 3rd.. Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 1986 ; 8 : 93–97. [CrossRef] [PubMed] [Google Scholar]
  9. Devaskar SU, Giddings SJ, Rajakumar PA, et al. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem 1994 ; 269 : 8445–8454. [PubMed] [Google Scholar]
  10. Gray SM, Aylor KW, Barrett EJ. Unravelling the regulation of insulin transport across the brain endothelial cell. Diabetologia 2018 ; 60 : 1512–1521. [CrossRef] [Google Scholar]
  11. Marks JL, Porte D, Jr., Stahl WL, Baskin DG. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 1990 ; 127 : 3234–3236. [CrossRef] [PubMed] [Google Scholar]
  12. Bruning JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000 ; 289 : 2122–2125. [CrossRef] [Google Scholar]
  13. Grillo CA, Tamashiro KL, Piroli GG, et al. Lentivirus-mediated downregulation of hypothalamic insulin receptor expression. Physiol Behav 2007 ; 92 : 691–701. [CrossRef] [PubMed] [Google Scholar]
  14. Loh K, Zhang L, Brandon A, et al. Insulin controls food intake and energy balance via NPY neurons. Mol Metab 2018 ; 6 : 574–584. [CrossRef] [Google Scholar]
  15. Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: Its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol 2014 ; 5 : 161. [CrossRef] [Google Scholar]
  16. Moult PR, Harvey J. Hormonal regulation of hippocampal dendritic morphology and synaptic plasticity. Cell Adh Migr 2008 ; 2 : 269–275. [CrossRef] [PubMed] [Google Scholar]
  17. van der Heide LP, Kamal A, Artola A, et al. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 2005 ; 94 : 1158–1166. [CrossRef] [PubMed] [Google Scholar]
  18. Grillo CA, Piroli GG, Lawrence RC, et al. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes 2015 ; 64 : 3927–3936. [CrossRef] [PubMed] [Google Scholar]
  19. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 2012 ; 42 : 484–491. [CrossRef] [PubMed] [Google Scholar]
  20. Benedict C, Hallschmid M, Hatke A, et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology 2004 ; 29 : 1326–1334. [CrossRef] [PubMed] [Google Scholar]
  21. Moloney AM, Griffin RJ, Timmons S, et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 2010 ; 31 : 224–243. [CrossRef] [PubMed] [Google Scholar]
  22. Talbot K, Wang HY, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012 ; 122 : 1316–1338. [CrossRef] [PubMed] [Google Scholar]
  23. Guerin O, Andrieu S, Schneider SM, et al. Different modes of weight loss in Alzheimer disease: a prospective study of 395 patients. Am J Clin Nutr 2005 ; 82 : 435–441. [CrossRef] [PubMed] [Google Scholar]
  24. Leboucher A, Laurent C, Fernandez-Gomez FJ, et al. Detrimental effects of diet-induced obesity on tau pathology are independent of insulin resistance in tau transgenic mice. Diabetes 2013 ; 62 : 1681–1688. [CrossRef] [PubMed] [Google Scholar]
  25. Brownlow ML, Benner L, D’Agostino D, et al. Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer’s pathology. PloS one 2013 ; 8 : e75713. [CrossRef] [PubMed] [Google Scholar]
  26. Brownlow ML, Joly-Amado A, Azam S, et al. Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behav Brain Res 2014 ; 271 : 79–88. [CrossRef] [PubMed] [Google Scholar]
  27. Joly-Amado A, Serraneau KS, Brownlow M, et al. Metabolic changes over the course of aging in a mouse model of tau deposition. Neurobiol Aging 2016 ; 44 : 62–73. [CrossRef] [PubMed] [Google Scholar]
  28. Wolf-Klein GP, Silverstone FA, Levy AP. Nutritional patterns and weight change in Alzheimer patients. Int Psychogeriatr 1992 ; 4 : 103–118. [CrossRef] [PubMed] [Google Scholar]
  29. Janson J, Laedtke T, Parisi JE, et al. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004 ; 53 : 474–481. [CrossRef] [PubMed] [Google Scholar]
  30. Bucht G, Adolfsson R, Lithner F, Winblad B. Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta Med Scand 1983 ; 213 : 387–392. [CrossRef] [Google Scholar]
  31. Fujisawa Y, Sasaki K, Akiyama K. Increased insulin levels after OGTT load in peripheral blood and cerebrospinal fluid of patients with dementia of Alzheimer type. Biol Psychiatry 1991 ; 30 : 1219–1228. [CrossRef] [PubMed] [Google Scholar]
  32. Ma J, Zhang W, Wang HF, et al. Peripheral blood adipokines and insulin levels in patients with Alzheimer’s disease: A replication study and meta-analysis. Curr Alzheimer Res 2016 ; 13 : 223–233. [CrossRef] [PubMed] [Google Scholar]
  33. Zhao WQ, De Felice FG, Fernandez S, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. Faseb J 2008 ; 22 : 246–260. [CrossRef] [PubMed] [Google Scholar]
  34. Bomfim TR, Forny-Germano L, Sathler LB, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Invest 2012 ; 122 : 1339–1353. [CrossRef] [PubMed] [Google Scholar]
  35. Jimenez-Palomares M, Ramos-Rodriguez JJ, Lopez-Acosta JF, et al. Increased Abeta production prompts the onset of glucose intolerance and insulin resistance. Am J Physiol Endocrinol Metab 2012 ; 302 : E1373–E1380. [CrossRef] [PubMed] [Google Scholar]
  36. Vandal M, White PJ, Chevrier G, et al. Age-dependent impairment of glucose tolerance in the 3xTg-AD mouse model of Alzheimer’s disease. Faseb J 2015 ; 29 : 4273–4284. [CrossRef] [PubMed] [Google Scholar]
  37. Clarke JR, Lyra ESNM, Figueiredo CP, et al. Alzheimer-associated Abeta oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 2015 ; 7 : 190–210. [CrossRef] [PubMed] [Google Scholar]
  38. Zhao N, Liu CC, Van Ingelgom AJ, et al. Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron 2018 ; 96 : 115–29 e5. [Google Scholar]
  39. Moloney AM, Griffin RJ, Timmons S, et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 2010 ; 31 : 224–243. [CrossRef] [PubMed] [Google Scholar]
  40. Yarchoan M, Toledo JB, Lee EB, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta neuropathol 2014 ; 128 : 679–689. [CrossRef] [PubMed] [Google Scholar]
  41. Marciniak E, Leboucher A, Caron E, et al. Tau deletion promotes brain insulin resistance. J Exp Med 2018 ; 214 : 2257–2269. [CrossRef] [Google Scholar]
  42. Ahmed T, Van der Jeugd A, Blum D, et al. Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol Aging 2014 ; 35 : 2474–2478. [CrossRef] [PubMed] [Google Scholar]
  43. Biundo F, Del Prete D, Zhang H, et al. A role for tau in learning, memory and synaptic plasticity. Sci Rep 2018 ; 8 : 3184. [CrossRef] [PubMed] [Google Scholar]
  44. Wijesekara N, Goncalves RA, Ahrens R, et al. Tau ablation in mice leads to pancreatic beta cell dysfunction and glucose intolerance. Faseb J 2018 : fj201701352. [Google Scholar]
  45. El Khoury NB, Gratuze M, Papon MA, et al. Insulin dysfunction and Tau pathology. Front Cell Neurosci 2014 ; 8 : 22. [CrossRef] [PubMed] [Google Scholar]
  46. Schubert M, Gautam D, Surjo D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A 2004 ; 101 : 3100–3105. [CrossRef] [PubMed] [Google Scholar]
  47. Schubert M, Brazil DP, Burks DJ, et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 2003 ; 23 : 7084–7092. [CrossRef] [PubMed] [Google Scholar]
  48. Cao B, Rosenblat JD, Brietzke E, et al. Comparative efficacy and acceptability of antidiabetic agents for Alzheimer’s disease and mild cognitive impairment: A systematic review and network meta-analysis. Diabetes Obes Metab 2018 10.1111/dom.13373 [Google Scholar]
  49. Avgerinos KI, Kalaitzidis G, Malli A, et al. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review. J Neurol 2018 10.1007/s00415-018-8768-0 [Google Scholar]
  50. Chapman CD, Schiöth HB, Grillo CA, Benedict C. Intranasal insulin in Alzheimer’s disease: Food for thought. Neuropharmacology 2018; 136(Pt B) : 196–201. [CrossRef] [PubMed] [Google Scholar]
  51. Gejl M, Gjedde A, Egefjord L, et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: Randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci 2016 ; 8 : 108. [CrossRef] [PubMed] [Google Scholar]
  52. Baloyannis SJ, Mavroudis I, Mitilineos D, et al. The hypothalamus in Alzheimer’s disease: a Golgi and electron microscope study. Am J Alzheimers Dis Other Demen. 2015 ; 30 : 478–487. [CrossRef] [PubMed] [Google Scholar]
  53. Swaab DF, Fliers E, Partiman TS. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 1985 ; 342 : 37–44. [CrossRef] [PubMed] [Google Scholar]
  54. Harper DG, Stopa EG, Kuo-Leblanc V, et al. Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain 2008 ; 131 : 1609–1617. [CrossRef] [PubMed] [Google Scholar]
  55. Stevanovic K, Yunus A, Joly-Amado A, et al. Disruption of normal circadian clock function in a mouse model of tauopathy. Exp Neurol 2018 ; 294 : 58–67. [CrossRef] [Google Scholar]
  56. Li T, Braunstein KE, Zhang J, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer’s disease mouse model. Nat Commun. 2016 ; 7 : 12082. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.