Open Access
Issue
Med Sci (Paris)
Volume 34, Number 11, Novembre 2018
Page(s) 936 - 943
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018239
Published online 10 December 2018
  1. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018 ; 19 : (4) 213–228. [CrossRef] [PubMed] [Google Scholar]
  2. van Niel G, Charrin S, Simoes S, et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 2011 ; 21 : 708–721. [CrossRef] [PubMed] [Google Scholar]
  3. Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 2018 ; 9 : 95–106. [CrossRef] [PubMed] [Google Scholar]
  4. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009 ; 9 : 581–593. [CrossRef] [PubMed] [Google Scholar]
  5. Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM. Membrane microparticles: two sides of the coin. Physiology (Bethesda) 2005 ; 20 : 22–27. [PubMed] [Google Scholar]
  6. Boulanger CM, Loyer X, Rautou PE, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 2018 ; 14 : 259–272. [CrossRef] [PubMed] [Google Scholar]
  7. Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res 2018 ; 120 : 1632–1648. [Google Scholar]
  8. Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 2016 ; 113 : E968–E977. [CrossRef] [PubMed] [Google Scholar]
  9. Durcin M, Fleury A, Taillebois E, et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles 2018 ; 6 : 1305677. [Google Scholar]
  10. Kim DK, Kang B, Kim OY, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles 2013; 2. [Google Scholar]
  11. Bolukbasi MF, Mizrak A, Ozdener GB, et al. miR-1289 and “Zipcode”-like sequence enrich mrnas in microvesicles. Mol Ther Nucleic Acids 2012 ; 1 : e10. [CrossRef] [PubMed] [Google Scholar]
  12. Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012 ; 119 : 756–766. [Google Scholar]
  13. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014; 3. [Google Scholar]
  14. Vernay M, Salanave B, de Peretti C, et al. Metabolic syndrome and socioeconomic status in France: The French Nutrition and Health Survey (ENNS, 2006–2007). Int J Public Health 2013 ; 58 : 855–864. [CrossRef] [PubMed] [Google Scholar]
  15. Cancello R, Tordjman J, Poitou C, et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 2006 ; 55 : 1554–1561. [CrossRef] [PubMed] [Google Scholar]
  16. Stepanian A, Bourguignat L, Hennou S, et al. Microparticle increase in severe obesity: Not related to metabolic syndrome and unchanged after massive weight loss. Obesity (Silver Spring) 2013 ; 21 : 11 2236–2243. [Google Scholar]
  17. Nemes K, Aberg F. Interpreting lipoproteins in nonalcoholic fatty liver disease. Curr Opin Lipidol 2018 ; 28 : 355–360. [Google Scholar]
  18. Ousmaal Mel F, Martinez MC, Andriantsitohaina R, et al. Increased monocyte/neutrophil and pro-coagulant microparticle levels and overexpression of aortic endothelial caveolin-1beta in dyslipidemic sand rat, Psammomys obesus. J Diabetes Complications 2016; 30 : 21–9. [CrossRef] [PubMed] [Google Scholar]
  19. Zu L, Ren C, Pan B, et al. Endothelial microparticles after antihypertensive and lipid-lowering therapy inhibit the adhesion of monocytes to endothelial cells. Int J Cardiol 2016 ; 202 : 756–759. [CrossRef] [PubMed] [Google Scholar]
  20. Yvan-Charvet L, Quignard-Boulange A. Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney international 2011 ; 79 : 162–168. [CrossRef] [PubMed] [Google Scholar]
  21. Lopez Andres N, Tesse A, Regnault V, et al. Increased microparticle production and impaired microvascular endothelial function in aldosterone-salt-treated rats: protective effects of polyphenols. PLoS One 2012; 7 : e39235. [CrossRef] [PubMed] [Google Scholar]
  22. Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2012 ; 32 : 2052–2059. [CrossRef] [PubMed] [Google Scholar]
  23. Li S, Wei J, Zhang C, et al. Cell-derived microparticles in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Cell Physiol Biochem 2016 ; 39 : 2439–2450. [CrossRef] [PubMed] [Google Scholar]
  24. Botha J, Velling Magnussen L, Nielsen MH, et al. Microvesicles correlated with components of metabolic syndrome in men with type 2 diabetes mellitus and lowered testosterone levels but were unaltered by testosterone therapy. J Diabetes Res 2018 ; 2017 : 4257875. [Google Scholar]
  25. Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 2008 ; 173 : 1210–1219. [CrossRef] [PubMed] [Google Scholar]
  26. Helal O, Defoort C, Robert S, et al. Increased levels of microparticles originating from endothelial cells, platelets and erythrocytes in subjects with metabolic syndrome: relationship with oxidative stress. Nutr Metab Cardiovasc Dis 2011 ; 21 : 665–671. [CrossRef] [PubMed] [Google Scholar]
  27. Diamant M, Nieuwland R, Pablo RF, et al. Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 2002 ; 106 : 2442–2447. [CrossRef] [PubMed] [Google Scholar]
  28. Kranendonk ME, de Kleijn DP, Kalkhoven E, et al. Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol 2014 ; 13 : 37. [CrossRef] [PubMed] [Google Scholar]
  29. Safiedeen Z, Rodriguez-Gomez I, Vergori L, et al. Temporal cross talk between endoplasmic reticulum and mitochondria regulates oxidative stress and mediates microparticle-induced endothelial dysfunction. Antioxid Redox Signal 2018 ; 26 : 15–27. [Google Scholar]
  30. Agouni A, Ducluzeau PH, Benameur T, et al. Microparticles from patients with metabolic syndrome induce vascular hypo-reactivity via Fas/Fas-ligand pathway in mice. PLoS One 2011 ; 6 : e27809. [CrossRef] [PubMed] [Google Scholar]
  31. Burger D, Montezano AC, Nishigaki N, et al. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol 2011 ; 31 : 1898–1907. [CrossRef] [PubMed] [Google Scholar]
  32. Jansen F, Yang X, Franklin BS, et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 2013 ; 98 : 94–106. [CrossRef] [PubMed] [Google Scholar]
  33. Togliatto G, Dentelli P, Gili M, et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond) 2016 ; 40 : 102–111. [CrossRef] [PubMed] [Google Scholar]
  34. Jansen F, Yang X, Hoelscher M, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013 ; 128 : 2026–2038. [CrossRef] [PubMed] [Google Scholar]
  35. Deng ZB, Poliakov A, Hardy RW, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 2009 ; 58 : 2498–2505. [CrossRef] [PubMed] [Google Scholar]
  36. Kranendonk ME, Visseren FL, van Balkom BW, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring) 2014 ; 22 : 1296–1308. [Google Scholar]
  37. Kranendonk ME, Visseren FL, van Herwaarden JA, et al. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity (Silver Spring) 2014 ; 22 : 2216–2223. [Google Scholar]
  38. Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 2018 ; 542 : 450–455. [Google Scholar]
  39. Ying W, Riopel M, Bandyopadhyay G, et al. Adipose tissue macrophage-derived exosomal mirnas can modulate in vivo and in vitro insulin sensitivity. Cell 2018 ; 171 : 372–84 e12. [Google Scholar]
  40. Aswad H, Forterre A, Wiklander OP, et al. Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia 2014 ; 57 : 2155–2164. [CrossRef] [PubMed] [Google Scholar]
  41. Hirsova P, Ibrahim SH, Krishnan A, et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 2016 ; 150 : 956–967. [CrossRef] [PubMed] [Google Scholar]
  42. Koeck ES, Iordanskaia T, Sevilla S, et al. Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J Surg Res 2014 ; 192 : 268–275. [CrossRef] [PubMed] [Google Scholar]
  43. Li L, Wang Z, Hu X, et al. Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2016 ; 479 : 343–350. [Google Scholar]
  44. Osada-Oka M, Shiota M, Izumi Y, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 2018 ; 40 : 353–360. [Google Scholar]
  45. Gao W, Liu H, Yuan J, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. J Cell Mol Med 2016 ; 20 : 2318–2327. [CrossRef] [PubMed] [Google Scholar]
  46. Milbank E, Soleti R, Martinez E, et al. Microparticles from apoptotic RAW 264.7 macrophage cells carry tumour necrosis factor-alpha functionally active on cardiomyocytes from adult mice. J Extracell Vesicles 2015; 4 : 28621. [Google Scholar]
  47. Liu S, da Cunha AP, Rezende RM, et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 2016 ; 19 : 32–43. [CrossRef] [PubMed] [Google Scholar]
  48. Choi Y, Kwon Y, Kim DK, et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Sci Rep 2015 ; 5 : 15878. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.