Open Access
Med Sci (Paris)
Volume 34, Number 11, Novembre 2018
Page(s) 944 - 953
Section M/S Revues
Published online 10 December 2018
  1. Gardner RL, Rossant J. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 1979 ; 52 : 141–152. [PubMed] [Google Scholar]
  2. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981 ; 292 : 154–156. [CrossRef] [PubMed] [Google Scholar]
  3. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981 ; 78 : 7634–7638. [CrossRef] [PubMed] [Google Scholar]
  4. Savatier P, Osteil P, Tam PP. Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff. Stem Cell Res 2017; 19 : 104–12. [Google Scholar]
  5. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003 ; 115 : 281–292. [CrossRef] [PubMed] [Google Scholar]
  6. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998 ; 12 : 2048–2060. [CrossRef] [PubMed] [Google Scholar]
  7. Paling NR, Wheadon H, Bone HK, Welham MJ. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signalling. J Biol Chem 2004 ; 279 : 48063–48070. [CrossRef] [PubMed] [Google Scholar]
  8. Tamm C, Bower N, Anneren C. Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. J Cell Sci 2011 ; 124 : 1136–1144. [Google Scholar]
  9. Martello G, Smith A. The nature of embryonic stem cells. Annu Rev Cell Dev Biol 2014 ; 30 : 647–675. [Google Scholar]
  10. Dunn SJ, Martello G, Yordanov B, et al. Defining an essential transcription factor program for naive pluripotency. Science 2014 ; 344 : 1156–1160. [Google Scholar]
  11. Ying QL, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal. Nature 2008 ; 453 : 519–523. [CrossRef] [PubMed] [Google Scholar]
  12. Beddington RS, Robertson EJ. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 1989 ; 105 : 733–737. [PubMed] [Google Scholar]
  13. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell 2009 ; 4 : 487–492. [Google Scholar]
  14. Boroviak T, Loos R, Bertone P, et al. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 2014 ; 16 : 516–528. [CrossRef] [PubMed] [Google Scholar]
  15. Saitou M, Miyauchi H. Gametogenesis from Pluripotent Stem Cells. Cell Stem Cell 2016 ; 18 : 721–735. [Google Scholar]
  16. Nichols J, Chambers I, Taga T, Smith A. Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development 2001 ; 128 : 2333–2339. [PubMed] [Google Scholar]
  17. Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci U S A 1997 ; 94 : 5709–5712. [CrossRef] [PubMed] [Google Scholar]
  18. Brons IG, Smithers LE, Trotter MW, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007 ; 448 : 191–195. [CrossRef] [PubMed] [Google Scholar]
  19. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007 ; 448 : 196–199. [CrossRef] [PubMed] [Google Scholar]
  20. Kojima Y, Kaufman-Francis K, Studdert JB, et al. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 2013 ; 14 : 107–120. [Google Scholar]
  21. Ficz G, Hore TA, Santos F, et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 2013 ; 13 : 351–359. [Google Scholar]
  22. Guo G, Yang J, Nichols J, et al. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 2009 ; 136 : 1063–1069. [CrossRef] [PubMed] [Google Scholar]
  23. Huang Y, Osorno R, Tsakiridis A, Wilson V. In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell reports 2012 ; 2 : 1571–1578. [CrossRef] [PubMed] [Google Scholar]
  24. Wu J, Okamura D, Li M, et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature 2015 ; 521 : 316–321. [CrossRef] [PubMed] [Google Scholar]
  25. Osteil P, Studdert J, Wilkie E, et al. Generation of genome-edited mouse epiblast stem cells via a detour through ES cell-chimeras. Differentiation 2016 ; 91 : 119–125. [CrossRef] [PubMed] [Google Scholar]
  26. Hayashi K, Ohta H, Kurimoto K, et al. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011 ; 146 : 519–532. [CrossRef] [PubMed] [Google Scholar]
  27. Tsukiyama T, Ohinata Y. A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice. PLoS ONE 2014 ; 9 : e95329. [CrossRef] [PubMed] [Google Scholar]
  28. Kim H, Wu J, Ye S, et al. Modulation of beta-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun 2013 ; 4 : 2403. [CrossRef] [PubMed] [Google Scholar]
  29. Kurek D, Neagu A, Tastemel M, et al. Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells. Stem cell reports 2015 ; 4 : 114–128. [CrossRef] [PubMed] [Google Scholar]
  30. Joo JY, Choi HW, Kim MJ, et al. Establishment of a primed pluripotent epiblast stem cell in FGF4-based conditions. Sci Rep 2014 ; 4 : 7477. [CrossRef] [PubMed] [Google Scholar]
  31. Kalkan T, Olova N, Roode M, et al. Tracking the embryonic stem cell transition from ground state pluripotency. Development 2018 ; 144 : 1221–1234. [Google Scholar]
  32. Smith A.. Formative pluripotency: the executive phase in a developmental continuum. Development 2018 ; 144 : 365–373. [Google Scholar]
  33. Han DW, Tapia N, Joo JY, et al. Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages. Cell 2010 ; 143 : 617–627. [CrossRef] [PubMed] [Google Scholar]
  34. Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 2005 ; 118 : 4495–4509. [Google Scholar]
  35. Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006 ; 24 : 185–187. [CrossRef] [PubMed] [Google Scholar]
  36. Daheron L, Opitz SL, Zaehres H, et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 2004 ; 22 : 770–778. [CrossRef] [PubMed] [Google Scholar]
  37. Takashima Y, Guo G, Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 2014 ; 158 : 1254–1269. [CrossRef] [PubMed] [Google Scholar]
  38. Chen H, Aksoy I, Gonnot F, et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naïve-like pluripotency. Nat Commun 2015 ; 6 : 7095–7112. [CrossRef] [PubMed] [Google Scholar]
  39. Sperber H, Mathieu J, Wang Y, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 2015 ; 17 : 1523–1535. [CrossRef] [PubMed] [Google Scholar]
  40. Rada-Iglesias A, Bajpai R, Swigut T, et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 2010 ; 470 : 279–283. [CrossRef] [PubMed] [Google Scholar]
  41. Nakamura T, Okamoto I, Sasaki K, et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 2016 ; 537 : 57–62. [CrossRef] [PubMed] [Google Scholar]
  42. Mascetti VL, Pedersen RA. Human-mouse chimerism validates human stem cell pluripotency. Cell Stem Cell 2016 ; 18 : 67–72. [Google Scholar]
  43. Masaki H, Kato-Itoh M, Umino A, et al. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Development 2015 ; 142 : 3222–3230. [CrossRef] [PubMed] [Google Scholar]
  44. Guo G, von Meyenn F, Santos F, et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 2016 ; 6 : 437–446. [CrossRef] [PubMed] [Google Scholar]
  45. Huang K, Maruyama T, Fan G. The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell 2014 ; 15 : 410–415. [Google Scholar]
  46. Manor YS, Massarwa R, Hanna JH. Establishing the human naive pluripotent state. Curr Opin Genet Dev 2015 ; 34 : 35–45. [CrossRef] [PubMed] [Google Scholar]
  47. Weinberger L, Ayyash M, Novershtern N, Hanna JH. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 2016 ; 17 : 155–169. [CrossRef] [PubMed] [Google Scholar]
  48. Warrier S, Van der Jeught M, Duggal G, et al. Direct comparison of distinct naive pluripotent states in human embryonic stem cells. Nat Commun 2018 ; 8 : 15055. [Google Scholar]
  49. Collier AJ, Rugg-Gunn PJ. Identifying human naive pluripotent stem cells - Evaluating state-specific reporter lines and cell-surface markers. Bioessays 2018 : e1700239. [CrossRef] [PubMed] [Google Scholar]
  50. Boroviak T, Nichols J. Primate embryogenesis predicts the hallmarks of human naive pluripotency. Development 2018 ; 144 : 175–186. [Google Scholar]
  51. Petropoulos S, Edsgard D, Reinius B, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 2016 ; 165 : 1012–1026. [CrossRef] [PubMed] [Google Scholar]
  52. Funk WD, Labat I, Sampathkumar J, et al. Evaluating the genomic and sequence integrity of human ES cell lines; comparison to normal genomes. Stem Cell Res 2012 ; 8 : 154–164. [Google Scholar]
  53. Na J, Baker D, Zhang J, et al. Aneuploidy in pluripotent stem cells and implications for cancerous transformation. Protein Cell 2014 ; 5 : 569–579. [CrossRef] [PubMed] [Google Scholar]
  54. Masaki H, Nakauchi H. Interspecies chimeras for human stem cell research. Development 2018 ; 144 : 2544–2547. [Google Scholar]
  55. Wu J, Greely HT, Jaenisch R, et al. Stem cells and interspecies chimaeras. Nature 2016 ; 540 : 51–59. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.