Open Access
Issue
Med Sci (Paris)
Volume 34, Number 8-9, Août–Septembre 2018
Les Cahiers de Myologie
Page(s) 671 - 677
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183408013
Published online 19 September 2018
  1. Kuhn JH. Guide to the correct use of filoviral nomenclature. Curr Top Microbiol Immunol 2017 ; 411 : 447–460. [PubMed] [Google Scholar]
  2. Baize S, Pannetier D, Oestereich L, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 2014 ; 371 : 1418–1425. [Google Scholar]
  3. Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol 2016 ; 16 : 566–580. [CrossRef] [PubMed] [Google Scholar]
  4. Kowalinski E, Lunardi T, McCarthy AA, et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011 ; 147 : 423–435. [CrossRef] [PubMed] [Google Scholar]
  5. Jiang X, Kinch LN, Brautigam CA, et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 2012 ; 36 : 959–973. [CrossRef] [PubMed] [Google Scholar]
  6. Devarkar SC, Wang C, Miller MT, et al. Structural basis for m7G recognition and 2’-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc Natl Acad Sci USA 2016 ; 113 : 596–601. [CrossRef] [Google Scholar]
  7. Uchikawa E, Lethier M, Malet H, et al. Structural analysis of dsRNA binding to anti-viral pattern recognition receptors LGP2 and MDA5. Mol Cell 2016 ; 62 : 586–602. [CrossRef] [PubMed] [Google Scholar]
  8. Wu B, Peisley A, Richards C, et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 2013 ; 152 : 276–289. [CrossRef] [PubMed] [Google Scholar]
  9. Rodriguez KR, Bruns AM, Horvath CM. MDA5 and LGP2 : accomplices and antagonists of antiviral signal transduction. J Virol 2014 ; 88 : 8194–8200. [CrossRef] [PubMed] [Google Scholar]
  10. Zhang Z, Ohto U, Shimizu T. Toward a structural understanding of nucleic acid-sensing Toll-like receptors in the innate immune system. FEBS Lett 2017 ; 591 : 3167–3181. [CrossRef] [PubMed] [Google Scholar]
  11. Fensterl V, Chattopadhyay S, Sen GC. No love lost between viruses and interferons. Annu Rev Virol 2015 ; 2 : 549–572. [CrossRef] [PubMed] [Google Scholar]
  12. Satoh T, Akira S. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr 2016 ; 4. [Google Scholar]
  13. Wang BX, Fish EN. The yin and yang of viruses and interferons. Trends Immunol 2012 ; 33 : 190–197. [CrossRef] [PubMed] [Google Scholar]
  14. García-Sastre A. Ten strategies of interferon evasion by viruses. Cell Host Microbe 2017 ; 22 : 176–184. [CrossRef] [PubMed] [Google Scholar]
  15. Martin B, Canard B, Decroly E. Filovirus proteins for antiviral drug discovery : structure/function bases of the replication cycle. Antiviral Res 2017 ; 141 : 48–61. [CrossRef] [PubMed] [Google Scholar]
  16. Leung DW, Prins KC, Basler CF, Amarasinghe GK. Ebolavirus VP35 is a multifunctional virulence factor. Virulence 2010 ; 1 : 526–531. [CrossRef] [PubMed] [Google Scholar]
  17. Ramanan P, Edwards MR, Shabman RS, et al. Structural basis for Marburg virus VP35-mediated immune evasion mechanisms. Proc Natl Acad Sci USA 2012 ; 109 : 20661–20666. [CrossRef] [Google Scholar]
  18. Edwards MR, Liu G, Mire CE, et al. Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins. Cell Rep 2016 ; 14 : 1632–1640. [CrossRef] [PubMed] [Google Scholar]
  19. Prins KC, Binning JM, Shabman RS, et al. Basic residues within the ebolavirus VP35 protein are required for its viral polymerase cofactor function. J Virol 2010 ; 84 : 10581–91. [CrossRef] [PubMed] [Google Scholar]
  20. Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion : insights from Ebola virus and Marburg virus. Nat Rev Microbiol 2015 ; 13 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  21. Kok KH, Lui PY, Ng MH, et al. The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response. Cell Host Microbe 2011 ; 9 : 299–309. [CrossRef] [PubMed] [Google Scholar]
  22. Prins KC, Cárdenas WB, Basler CF. Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J Virol 2009 ; 83 : 3069–3077. [CrossRef] [PubMed] [Google Scholar]
  23. Chang TH, Kubota T, Matsuoka M, et al. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog 2009 ; 5 : e1000493. [CrossRef] [PubMed] [Google Scholar]
  24. Martin B, Reynard O, Volchkov V, Decroly E. Filovirus proteins for antiviral drug discovery : Structure/function of proteins involved in assembly and budding. Antiviral Res 2018 ; 150 : 183–192. [CrossRef] [PubMed] [Google Scholar]
  25. Reid SP, Leung LW, Hartman AL, et al. Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 2006 ; 80 : 5156–5167. [CrossRef] [PubMed] [Google Scholar]
  26. Reid SP, Valmas C, Martinez O, et al. Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 2007 ; 81 : 13469–13477. [CrossRef] [PubMed] [Google Scholar]
  27. Xu W, Edwards MR, Borek DM, et al. Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 2014 ; 16 : 187–200. [CrossRef] [PubMed] [Google Scholar]
  28. Valmas C, Grosch MN, Schümann M, et al. Marburg virus evades interferon responses by a mechanism distinct from ebola virus. PLoS Pathog 2010 ; 6 : e1000721. [CrossRef] [PubMed] [Google Scholar]
  29. Feng Z, Cerveny M, Yan Z, He B. The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR. J Virol 2007 ; 81 : 182–192. [CrossRef] [PubMed] [Google Scholar]
  30. Kühl A, Banning C, Marzi A, et al. The Ebola virus glycoprotein and HIV-1 Vpu employ different strategies to counteract the antiviral factor tetherin. J Infect Dis 2011 ; 204 (suppl 3) : S850–s860. [CrossRef] [PubMed] [Google Scholar]
  31. Lopez LA, Yang SJ, Exline CM, et al. Anti-tetherin activities of HIV-1 Vpu and Ebola virus glycoprotein do not involve removal of tetherin from lipid rafts. J Virol 2012 ; 86 : 5467–5480. [CrossRef] [PubMed] [Google Scholar]
  32. Shabman RS, Hoenen T, Groseth A, et al. An upstream open reading frame modulates ebola virus polymerase translation and virus replication. PLoS Pathog 2013 ; 9 : e1003147. [CrossRef] [PubMed] [Google Scholar]
  33. Wek RC, Jiang HY, Anthony TG. Coping with stress : eIF2 kinases and translational control. Biochem Soc Trans 2006 ; 34 : 7–11. [CrossRef] [PubMed] [Google Scholar]
  34. Page A, Volchkova VA, Reid SP, et al. Marburgvirus hijacks nrf2-dependent pathway by targeting nrf2-negative regulator keap1. Cell Rep 2014 ; 6 : 1026–1036. [CrossRef] [PubMed] [Google Scholar]
  35. Edwards MR, Johnson B, Mire CE, et al. The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell Rep 2014 ; 6 : 1017–1025. [CrossRef] [PubMed] [Google Scholar]
  36. Copple IM. The Keap1-Nrf2 cell defense pathway : a promising therapeutic target? Adv Pharmacol 2012 ; 63 : 43–79. [CrossRef] [PubMed] [Google Scholar]
  37. Edwards MR, Basler CF. Marburg Virus VP24 protein relieves suppression of the NF-κB pathway through interaction with Kelch-like ECH-Associated Protein 1. J Infect Dis 2015 ; 212 (suppl 2) : S154–S159. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.