Free Access
Issue
Med Sci (Paris)
Volume 34, Number 8-9, Août–Septembre 2018
Page(s) 678 - 684
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183408014
Published online 19 September 2018
  1. Darling WG, Pizzimenti MA, Morecraft RJ. Functional recovery following motor cortex lesions in non-human primates: experimental implications for human stroke patients. J Integr Neurosci 2011 ; 10 : 353–384. [CrossRef] [PubMed] [Google Scholar]
  2. Plumet J, Ebrahimi A, Guitet J, et al. Partial recovery of skilled forelimb reaching after transplantation of fetal cortical tissue in adult rats with motor cortex lesion - anatomical and functional aspects. Restor Neurol Neurosci 1993 : 6 : 9–27. [Google Scholar]
  3. Ebrahimi-Gaillard A, Beck T, Gaillard F, et al. Transplants of embryonic cortical tissue placed in the previously damaged frontal cortex of adult rats : local cerebral glucose utilization following execution of forelimb movements. Neuroscience 1995 : 64 : 49–60. [CrossRef] [PubMed] [Google Scholar]
  4. Riolobos AS, Heredia M, de la Fuente JA, et al. Functional recovery of skilled forelimb use in rats obliged to use the impaired limb after grafting of the frontal cortex lesion with homotopic fetal cortex. Neurobiol Learn Mem 2001 : 75 : 274–292. [CrossRef] [PubMed] [Google Scholar]
  5. Gaillard A, Prestoz L, Dumartin B, et al. Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons. Nat Neurosci 2007 ; 10 : 1294–1299. [CrossRef] [PubMed] [Google Scholar]
  6. Santos-Torres J, Heredia M, Riolobos AS, et al. Electrophysiological and synaptic characterization of transplanted neurons in adult rat motor cortex. J Neurotrauma 2009 ; 26 : 1593–1607. [CrossRef] [PubMed] [Google Scholar]
  7. Ballout N, Frappé I, Péron S, et al. Development and maturation of cortical embryonic neurons grafted into the damaged adult motor cortex. Front Neural Circuits 2016 ; 10 : 55. [CrossRef] [PubMed] [Google Scholar]
  8. Falkner S, Grade S, Dimou L, et al. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature 2016 : 539 : 248–253 [CrossRef] [PubMed] [Google Scholar]
  9. Péron S, Droguerre M, Debarbieux F, et al. A delay between lesion and transplantation enhances graft integration and ameliorates repair and recovery. J Neurosci 2017 ; 37 : 1820–1823. [CrossRef] [PubMed] [Google Scholar]
  10. Plumet J, Cadusseau J, Roger M. Fetal cortical transplants reduce motor deficits resulting from neonatal damage to the rat’s frontal cortex. Neurosci Lett 1990 ; 109 : 102–116. [CrossRef] [PubMed] [Google Scholar]
  11. Floeter M, Jones E. Connections made by transplants to the cerebral cortex of rat brains damaged in utero. J Neurosci 1984 ; 4 : 141–150. [CrossRef] [PubMed] [Google Scholar]
  12. Frappé I, Roger M, Gaillard A. Transplants of fetal frontal cortex grafted into the occipital cortex of newborn rats receive a substantial thalamic input from nuclei normally projecting to the frontal cortex. Neuroscience 1999 ; 89 : 409–421. [CrossRef] [PubMed] [Google Scholar]
  13. Ebrahimi-Gaillard A, Guitet J, Garnier C, et al. Topographic distribution of efferent fibers originating from homotopic or heterotopic transplants: heterotopically transplanted neurons retain some of the developmental characteristics corresponding to their site of origin. Dev Brain Res 1994 ; 77 : 271–283. [CrossRef] [Google Scholar]
  14. Gaillard A, Gaillard F, Roger M. Neocortical grafting to newborn and adult rats: developmental, anatomical and functional aspects. Adv Anat Embryol Cell Biol 1998 ; 148 : 1–86. [CrossRef] [PubMed] [Google Scholar]
  15. Barth TM, Stanfield BB. Homotopic, but not heterotopic, fetal cortical transplants can result in functional sparing following neonatal damage to the frontal cortex in rats. Cereb Cortex 1994 ; 4 : 271–278. [CrossRef] [PubMed] [Google Scholar]
  16. Sandor R, Gonzalez MF, Moseley M, et al. Motor deficits are produced by removing some cortical transplants grafted into injured sensorimotor cortex of neonatal rats. J Neural Transplant Plast 1991 ; 2 : 221–233. [CrossRef] [PubMed] [Google Scholar]
  17. Neafsey EJ, Sørensen JC, Tønder N, et al. Fetal cortical transplants into neonatal rats respond to thalamic and peripheral stimulation in the adult. An electrophysiological study of single-unit activity. Brain Res 1989 ; 493 : 33–34. [CrossRef] [PubMed] [Google Scholar]
  18. Guitet J, Garnier C, Ebrahimi-Gaillard A, et al. Efferents of frontal or occipital cortex grafted into adult rat’s motor cortex. Neurosci Lett 1994 ; 180 : 265–268. [CrossRef] [PubMed] [Google Scholar]
  19. Sorensen JC, Grabowski M, Zimmer J, et al. Fetal neocortical tissue blocks implanted in brain infarcts of adult rats interconnect with the host brain. Exp Neurol 1996 ; 138 : 227–235. [CrossRef] [PubMed] [Google Scholar]
  20. Gaillard F, Domballe L, Gaillard A. Fetal cortical allografts project massively through the adult cortex. Neuroscience 2004 ; 126 : 631–637. [CrossRef] [PubMed] [Google Scholar]
  21. Gaillard F, Jaber M. Repair of damaged adult cortex by transplantation of embryonic neurons. Med Sci 2008 : 24 : 132–134. [EDP Sciences] [Google Scholar]
  22. Grabowski M, Brundin P, Johansson BB. Functional integration of cortical grafts placed in brain infarcts of rats. Ann Neurol 1993 ; 34 : 362–368. [CrossRef] [PubMed] [Google Scholar]
  23. Senatorov VV, Obuhova GP, Fülöp Z. Electrophysiological and morphological properties of embryonic neocortical grafts developing in different regions of the host rat brain. J Neural Transplant Plast 1991 ; 2 : 125–140. [CrossRef] [PubMed] [Google Scholar]
  24. Pinaudeau C, Gaillard A, Roger M. Stage of specification of the spinal cord and tectal projections from cortical grafts. Eur J Neurosci 2000 ; 12 : 2 486–496. [CrossRef] [Google Scholar]
  25. Gaillard A, Roger M. Early commitment of embryonic neocortical cells to develop area-specific thalamic connections. Cereb Cortex 2000 ; 10 : 443–453. [CrossRef] [PubMed] [Google Scholar]
  26. Belichenko PV, Mattsson B, Johansson BB. Neuronal and fibre organization in neocortical graft placed in post-ischaemic adult rat brain: a three-dimensional confocal microscopy study. J Comp Pathol 2001 ; 124 : 142–148. [CrossRef] [PubMed] [Google Scholar]
  27. Bragin A, Takács J, Vinogradova O, et al. Age-related loss of GABA-positive and GABA-negative neurons in neocortical transplants. J Neural Transplant Plast 1993 ; 4 : 53–9. [CrossRef] [PubMed] [Google Scholar]
  28. Das GD, Hallas BH, Das KG. Transplantation of brain tissue in the brain of rat. I. Growth characteristics of neocortical transplants from embryos of different ages. Am J Anat 1980 ; 158 : 135–145. [CrossRef] [PubMed] [Google Scholar]
  29. Hallas BH, Das GD, Das KG. Transplantation of brain tissue in the brain of rats. II. Growth characteristics of neocortical transplants in hosts of different ages. Am J Anat 1980 ; 158 : 147–159. [CrossRef] [PubMed] [Google Scholar]
  30. Eriksdotter-Nilsson M, Olson L. Growth of brain tissue grafts is dependent upon host age. Mech Ageing Dev 1989 ; 49 : 1–22. [CrossRef] [PubMed] [Google Scholar]
  31. Zaman V, Shetty AK. Combined neurotrophic supplementation and caspase inhibition enhances survival of fetal hippocampal CA3 cell grafts in lesioned CA3 region of the aging hippocampus. Neuroscience 2002 ; 109 : 537–553. [CrossRef] [PubMed] [Google Scholar]
  32. Gibbs RB, Cotman CW. Factors affecting survival and outgrowth from transplants of entorhinal cortex. Neurosci 1987 ; 21 : 699–706. [CrossRef] [Google Scholar]
  33. Gaillard A, Jaber M. Is the outgrowth of transplant-derived axons guided by host astrocytes and myelin loss ? Cell Adh Migr 2007 ; 1 : 161–164. [CrossRef] [PubMed] [Google Scholar]
  34. Bjorklund A, Stenevi U, Dunnett SB, et al. Cross-species neural grafting in a rat model of Parkinson’s disease. Nature 1982 ; 298 : 652–654. [CrossRef] [PubMed] [Google Scholar]
  35. Russo MV, McGavern DB. Inflammatory neuroprotection following traumatic brain injury. Science 2016 ; 353 : 783–785. [CrossRef] [Google Scholar]
  36. Kato H, Walz W. The initiation of the microglial response. Brain Pathol 2000 ; 10 : 137–143. [CrossRef] [PubMed] [Google Scholar]
  37. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007 ; 8 : 57–69. [CrossRef] [PubMed] [Google Scholar]
  38. Hotta N, Aoyama M, Inagaki M, et al. Expression of glia maturation factor beta after cryogenic brain injury. Mol Brain Res 2005 ; 133 : 71–77. [CrossRef] [Google Scholar]
  39. Cheng Q, Di Liberto V, Caniglia G, et al. Time-course of GDNF and its receptor expression after brain injury in the rat. Neurosci Lett 2008 ; 439 : 24–9. [CrossRef] [PubMed] [Google Scholar]
  40. Lee HJ, Park IH, Kim HJ, et al. Human neural stem cells overexpressing glial cell line-derived neurotrophic factor in experimental cerebral hemorrhage. Gene Ther 2009 ; 16 : 1066–76. [CrossRef] [PubMed] [Google Scholar]
  41. Lee HJ, Lim IJ, Lee MC, et al. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model. J Neurosci Res 2010 ; 88 : 3282–94. [CrossRef] [PubMed] [Google Scholar]
  42. Gonzalez M, Sharp F. Fetal frontal cortex transplanted to injured motor/sensory cortex of adult rats. I. NADPH-diaphorase neurons. J Neurosci 1987 ; 7 : 2991–3001. [CrossRef] [PubMed] [Google Scholar]
  43. Grabowski M, Johansson BB, Brundin P. Survival of fetal neocortical grafts implanted in brain infarcts of adult rats: the influence of postlesion time and age of donor tissue. Exp Neurol 1994: 127 : 126–136. [CrossRef] [PubMed] [Google Scholar]
  44. Nieto-Sampedro M, Manthrope M, Barbin G, Varon S, Cotman CW. Injury induced neuronotrophic activity in adult rat brain: correlation with survival of delayed implants in the wound cavity. J Neurosci 1983 ; 3 : 2219–2229. [CrossRef] [PubMed] [Google Scholar]
  45. Stein DG, Palatucci C, Kahn D, et al. Temporal factors influence recovery of function after embryonic brain tissue transplants in adult rats with frontal cortex lesions. Behav Neurosci 1988 ; 102 : 260–267. [CrossRef] [PubMed] [Google Scholar]
  46. Dray C, Rougon G, Debarbieux F. Quantitative analysis by in vivo imaging of the dynamics of vascular and axonal networks in injured mouse spinal cord. Proc Natl Acad Sci USA 2009 ; 106 : 9459–9464. [CrossRef] [Google Scholar]
  47. Dunn EH. Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat. J Comp Neurol 1917 ; 27 : 565–582. [CrossRef] [Google Scholar]
  48. Krum JM, Rosenstein JM. Patterns of angiogenesis in neural transplant model: II. Fetal neocortical transplants. J Comp Neurol 1988 ; 271 : 331–345. [CrossRef] [PubMed] [Google Scholar]
  49. Dusart I, Nothias F, Roudier F, et al. Vascularization of fetal cell suspension grafts in the excitotoxically lesioned adult rat thalamus. Brain Res Dev 1989 ; 48 : 215–228. [CrossRef] [Google Scholar]
  50. Grabowski M, Christofferson RH, Brundin P, et al. Vascularization of fetal neocortical grafts implanted in brain infarcts in spontaneously hypertensive rats. Neuroscience 1992 ; 51 : 673–682. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.