Open Access
Med Sci (Paris)
Volume 34, Number 8-9, Août–Septembre 2018
Les Cahiers de Myologie
Page(s) 685 - 692
Section M/S Revues
Published online 19 September 2018
  1. Day DS, Zhang B, Stevens SM, et al. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol 2016 ; 17 : 120. [Google Scholar]
  2. Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2015 ; 16 : 167–77. [CrossRef] [PubMed] [Google Scholar]
  3. Marshall NF, Price DH. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem 1995 ; 270 : 12335–12338. [CrossRef] [PubMed] [Google Scholar]
  4. Cho S, Schroeder S, Ott M. Cycling through transcription : posttranslational modifications of P-TEFb regulate transcription elongation. Cell Cycle Georget Tex 2010 ; 9 : 1697–705. [CrossRef] [Google Scholar]
  5. Muniz L, Kiss T, Egloff S. Perturbations de la transcription liées à une dérégulation de P-TEFb : cancer, Sida et hypertrophie cardiaque. Med Sci (Paris) 2012 ; 28 : 200–205. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Nguyen VT, Kiss T, Michels AA, et al. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 2001 ; 414 : 322–325. [CrossRef] [PubMed] [Google Scholar]
  7. Kobbi L, Demey-Thomas E, Braye F, et al. An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb. Proc Natl Acad Sci USA 2016 ; 113 : 12721–12726. [CrossRef] [Google Scholar]
  8. Quaresma AJ, Bugai A, Barboric M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res 2016 ; 44 : 7527–7539. [CrossRef] [PubMed] [Google Scholar]
  9. Jang MK, Mochizuki K, Zhou M, et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 2005 ; 19 : 523–534. [CrossRef] [PubMed] [Google Scholar]
  10. McNamara RP, Reeder JE, McMillan EA, et al. KAP1 recruitment of the 7SK snRNP complex to promoters enables transcription elongation by RNA polymerase II. Mol Cell 2016 ; 61 : 39–53. [CrossRef] [PubMed] [Google Scholar]
  11. Bidaux G, Le Nézet C, Pisfil MG, et al. FRET image correlation spectroscopy reveals rnapii-independent P-TEFb recruitment on chromatin. Biophys J 2018 ; 114 : 522–533. [CrossRef] [PubMed] [Google Scholar]
  12. Liu W, Ma Q, Wong K, et al. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 2013 ; 155 : 1581–1595. [CrossRef] [PubMed] [Google Scholar]
  13. Devaiah BN, Case-Borden C, Gegonne A, et al. BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat Struct Mol Biol 2016 ; 23 : 540–548. [CrossRef] [PubMed] [Google Scholar]
  14. Baranello L, Wojtowicz D, Cui K, et al. RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell 2016 ; 165 : 357–371. [CrossRef] [PubMed] [Google Scholar]
  15. Devaiah BN, Singer DS. Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation. J Biol Chem 2012 ; 287 : 38755–38766. [CrossRef] [PubMed] [Google Scholar]
  16. Col E, Hoghoughi N, Dufour S, et al. Bromodomain factors of BET family are new essential actors of pericentric heterochromatin transcriptional activation in response to heat shock. Sci Rep 2017 ; 7 : 5418. [CrossRef] [PubMed] [Google Scholar]
  17. Izeddin I, Récamier V, Bosanac L, et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 2014 ; 3 . [Google Scholar]
  18. Westermark PO. Linking core promoter classes to circadian transcription. PLoS Genet 2016 ; 12 : e1006231. [CrossRef] [PubMed] [Google Scholar]
  19. Yang Z, He N, Zhou Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol Cell Biol 2008 ; 28 : 967–976. [CrossRef] [PubMed] [Google Scholar]
  20. Zhao R, Nakamura T, Fu Y, et al. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat Cell Biol 2011 ; 13 : 1295–1304. [CrossRef] [PubMed] [Google Scholar]
  21. Brès V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol 2008 ; 20 : 334–340. [CrossRef] [PubMed] [Google Scholar]
  22. Oven I, Brdicková N, Kohoutek J, et al. AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol 2007 ; 27 : 8815–8823. [CrossRef] [PubMed] [Google Scholar]
  23. Oqani RK, Lin T, Lee JE, et al. Inhibition of P-TEFb disrupts global transcription, oocyte maturation, and embryo development in the mouse. Genes 2016 ; 54 : 470–482. [Google Scholar]
  24. Houzelstein D, Bullock SL, Lynch DE, et al. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol Cell Biol 2002 ; 22 : 3794–3802. [CrossRef] [PubMed] [Google Scholar]
  25. Di Micco R, Fontanals-Cirera B, Low V, et al. Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep 2014 ; 9 : 234–247. [CrossRef] [PubMed] [Google Scholar]
  26. Huang F, Wagner M, Siddiqui MA. Ablation of the CLP-1 gene leads to down-regulation of the HAND1 gene and abnormality of the left ventricle of the heart and fetal death. Mech Dev 2004 ; 121 : 559–572. [CrossRef] [PubMed] [Google Scholar]
  27. Espinoza-Derout J, Wagner M, Shahmiri K, et al. Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy. Cardiovasc Res 2007 ; 75 : 129–138. [CrossRef] [PubMed] [Google Scholar]
  28. Wagner KD, Wagner N, Ghanbarian H, et al. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell 2008 ; 14 : 962–969. [CrossRef] [PubMed] [Google Scholar]
  29. Stratton MS, Lin CY, Anand P, et al. Signal-dependent recruitment of BRD4 to cardiomyocyte super-enhancers is suppressed by a microRNA. Cell Rep 2016 ; 16 : 1366–1378. [CrossRef] [PubMed] [Google Scholar]
  30. Anand P, Brown JD, Lin CY, et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 2013 ; 154 : 569–582. [CrossRef] [PubMed] [Google Scholar]
  31. Yoshida H, Bansal K, Schaefer U, et al. Brd4 bridges the transcriptional regulators, Aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells. Proc Natl Acad Sci USA 2015 ; 112 : E4448–E4457. [CrossRef] [Google Scholar]
  32. Elagib KE, Rubinstein JD, Delehanty LL, et al. Calpain 2 activation of P-TEFb drives megakaryocyte morphogenesis and is disrupted by leukemogenic GATA1 mutation. Dev Cell 2013 ; 27 : 607–620. [CrossRef] [PubMed] [Google Scholar]
  33. Mancebo HS, Lee G, Flygare J, et al. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 1997 ; 11 : 2633–2644. [CrossRef] [PubMed] [Google Scholar]
  34. Barboric M, Yik JHN, Czudnochowski N, et al. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res 2007 ; 35 : 2003–2012. [CrossRef] [PubMed] [Google Scholar]
  35. Bisgrove DA, Mahmoudi T, Henklein P, et al. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc Natl Acad Sci USA 2007 ; 104 : 13690–13695. [CrossRef] [Google Scholar]
  36. Lu P, Qu X, Shen Y, et al. The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep 2016 ; 6 : 24100. [CrossRef] [PubMed] [Google Scholar]
  37. Wang X, Helfer CM, Pancholi N, et al. Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J Virol 2013 ; 87 : 3871–3884. [CrossRef] [PubMed] [Google Scholar]
  38. Palermo RD, Webb HM, West MJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog 2011 ; 7 : e1002334. [CrossRef] [PubMed] [Google Scholar]
  39. Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. BioEssays News Rev Mol Cell Dev Biol 2016 ; 38 (suppl 1) : S75–S85. [CrossRef] [Google Scholar]
  40. Rahl PB, Lin CY, Seila AC, et al. c-Myc regulates transcriptional pause release. Cell 2010 ; 141 : 432–45. [CrossRef] [PubMed] [Google Scholar]
  41. Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011 ; 478 : 524–8. [CrossRef] [PubMed] [Google Scholar]
  42. Wang R, Cao X-J, Kulej K, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci USA 2017 ; 114 : E5352–E5361. [CrossRef] [Google Scholar]
  43. Yokoyama A, Lin M, Naresh A, et al. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 2010 ; 17 : 198–212. [CrossRef] [PubMed] [Google Scholar]
  44. Holkova B, Kmieciak M, Perkins EB, et al. Phase I trial of bortezomib (PS-341 ; NSC 681239) and nonhybrid (bolus) infusion schedule of alvocidib (flavopiridol ; NSC 649890) in patients with recurrent or refractory indolent B-cell neoplasms. Clin Cancer Res 2014 ; 20 : 5652–5662. [CrossRef] [PubMed] [Google Scholar]
  45. Zeidner JF, Foster MC, Blackford AL, et al. Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7+3) in newly diagnosed acute myeloid leukemia. Haematologica 2015 ; 100 : 1172–1179. [CrossRef] [PubMed] [Google Scholar]
  46. Stathis A, Zucca E, Bekradda M, et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov 2016 ; 6 : 492–500. [CrossRef] [PubMed] [Google Scholar]
  47. Amorim S, Stathis A, Gleeson M, et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma : a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol 2016 ; 3 : e196–e204. [CrossRef] [PubMed] [Google Scholar]
  48. Morales F, Giordano A. Overview of CDK9 as a target in cancer research. Cell Cycle Georget Tex 2016 ; 15 : 519–527. [CrossRef] [Google Scholar]
  49. Stathis A, Bertoni F. BET Proteins as targets for anticancer treatment. Cancer Discov 2018 ;8 : 24–36. [CrossRef] [PubMed] [Google Scholar]
  50. Matzuk MM, McKeown MR, Filippakopoulos P, et al. Small-molecule inhibition of BRDT for male contraception. Cell 2012 ; 150 : 673–684. [CrossRef] [PubMed] [Google Scholar]
  51. Bolden JE, Tasdemir N, Dow LE, et al. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep 2014 ; 8 : 1919–1929. [CrossRef] [PubMed] [Google Scholar]
  52. Mele DA, Salmeron A, Ghosh S, et al. BET bromodomain inhibition suppresses TH17-mediated pathology. J Exp Med 2013 ; 210 : 2181–2190. [CrossRef] [PubMed] [Google Scholar]
  53. Dujardin G, Daguenet E, Bernard DG, et al. L’épissage des ARN pré-messagers : quand le splicéosome perd pied. Med Sci (Paris) 2016 ; 32 : 1103–1110. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.