Open Access
Numéro
Med Sci (Paris)
Volume 34, Numéro 8-9, Août–Septembre 2018
Les Cahiers de Myologie
Page(s) 685 - 692
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183408015
Publié en ligne 19 septembre 2018
  1. Day DS, Zhang B, Stevens SM, et al. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol 2016 ; 17 : 120. [Google Scholar]
  2. Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2015 ; 16 : 167–77. [CrossRef] [PubMed] [Google Scholar]
  3. Marshall NF, Price DH. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem 1995 ; 270 : 12335–12338. [CrossRef] [PubMed] [Google Scholar]
  4. Cho S, Schroeder S, Ott M. Cycling through transcription : posttranslational modifications of P-TEFb regulate transcription elongation. Cell Cycle Georget Tex 2010 ; 9 : 1697–705. [CrossRef] [Google Scholar]
  5. Muniz L, Kiss T, Egloff S. Perturbations de la transcription liées à une dérégulation de P-TEFb : cancer, Sida et hypertrophie cardiaque. Med Sci (Paris) 2012 ; 28 : 200–205. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Nguyen VT, Kiss T, Michels AA, et al. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 2001 ; 414 : 322–325. [CrossRef] [PubMed] [Google Scholar]
  7. Kobbi L, Demey-Thomas E, Braye F, et al. An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb. Proc Natl Acad Sci USA 2016 ; 113 : 12721–12726. [CrossRef] [Google Scholar]
  8. Quaresma AJ, Bugai A, Barboric M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res 2016 ; 44 : 7527–7539. [CrossRef] [PubMed] [Google Scholar]
  9. Jang MK, Mochizuki K, Zhou M, et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 2005 ; 19 : 523–534. [CrossRef] [PubMed] [Google Scholar]
  10. McNamara RP, Reeder JE, McMillan EA, et al. KAP1 recruitment of the 7SK snRNP complex to promoters enables transcription elongation by RNA polymerase II. Mol Cell 2016 ; 61 : 39–53. [CrossRef] [PubMed] [Google Scholar]
  11. Bidaux G, Le Nézet C, Pisfil MG, et al. FRET image correlation spectroscopy reveals rnapii-independent P-TEFb recruitment on chromatin. Biophys J 2018 ; 114 : 522–533. [CrossRef] [PubMed] [Google Scholar]
  12. Liu W, Ma Q, Wong K, et al. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 2013 ; 155 : 1581–1595. [CrossRef] [PubMed] [Google Scholar]
  13. Devaiah BN, Case-Borden C, Gegonne A, et al. BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat Struct Mol Biol 2016 ; 23 : 540–548. [CrossRef] [PubMed] [Google Scholar]
  14. Baranello L, Wojtowicz D, Cui K, et al. RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell 2016 ; 165 : 357–371. [CrossRef] [PubMed] [Google Scholar]
  15. Devaiah BN, Singer DS. Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation. J Biol Chem 2012 ; 287 : 38755–38766. [CrossRef] [PubMed] [Google Scholar]
  16. Col E, Hoghoughi N, Dufour S, et al. Bromodomain factors of BET family are new essential actors of pericentric heterochromatin transcriptional activation in response to heat shock. Sci Rep 2017 ; 7 : 5418. [CrossRef] [PubMed] [Google Scholar]
  17. Izeddin I, Récamier V, Bosanac L, et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 2014 ; 3 . [Google Scholar]
  18. Westermark PO. Linking core promoter classes to circadian transcription. PLoS Genet 2016 ; 12 : e1006231. [CrossRef] [PubMed] [Google Scholar]
  19. Yang Z, He N, Zhou Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol Cell Biol 2008 ; 28 : 967–976. [CrossRef] [PubMed] [Google Scholar]
  20. Zhao R, Nakamura T, Fu Y, et al. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat Cell Biol 2011 ; 13 : 1295–1304. [CrossRef] [PubMed] [Google Scholar]
  21. Brès V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol 2008 ; 20 : 334–340. [CrossRef] [PubMed] [Google Scholar]
  22. Oven I, Brdicková N, Kohoutek J, et al. AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol 2007 ; 27 : 8815–8823. [CrossRef] [PubMed] [Google Scholar]
  23. Oqani RK, Lin T, Lee JE, et al. Inhibition of P-TEFb disrupts global transcription, oocyte maturation, and embryo development in the mouse. Genes 2016 ; 54 : 470–482. [Google Scholar]
  24. Houzelstein D, Bullock SL, Lynch DE, et al. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol Cell Biol 2002 ; 22 : 3794–3802. [CrossRef] [PubMed] [Google Scholar]
  25. Di Micco R, Fontanals-Cirera B, Low V, et al. Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep 2014 ; 9 : 234–247. [CrossRef] [PubMed] [Google Scholar]
  26. Huang F, Wagner M, Siddiqui MA. Ablation of the CLP-1 gene leads to down-regulation of the HAND1 gene and abnormality of the left ventricle of the heart and fetal death. Mech Dev 2004 ; 121 : 559–572. [CrossRef] [PubMed] [Google Scholar]
  27. Espinoza-Derout J, Wagner M, Shahmiri K, et al. Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy. Cardiovasc Res 2007 ; 75 : 129–138. [CrossRef] [PubMed] [Google Scholar]
  28. Wagner KD, Wagner N, Ghanbarian H, et al. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell 2008 ; 14 : 962–969. [CrossRef] [PubMed] [Google Scholar]
  29. Stratton MS, Lin CY, Anand P, et al. Signal-dependent recruitment of BRD4 to cardiomyocyte super-enhancers is suppressed by a microRNA. Cell Rep 2016 ; 16 : 1366–1378. [CrossRef] [PubMed] [Google Scholar]
  30. Anand P, Brown JD, Lin CY, et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 2013 ; 154 : 569–582. [CrossRef] [PubMed] [Google Scholar]
  31. Yoshida H, Bansal K, Schaefer U, et al. Brd4 bridges the transcriptional regulators, Aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells. Proc Natl Acad Sci USA 2015 ; 112 : E4448–E4457. [CrossRef] [Google Scholar]
  32. Elagib KE, Rubinstein JD, Delehanty LL, et al. Calpain 2 activation of P-TEFb drives megakaryocyte morphogenesis and is disrupted by leukemogenic GATA1 mutation. Dev Cell 2013 ; 27 : 607–620. [CrossRef] [PubMed] [Google Scholar]
  33. Mancebo HS, Lee G, Flygare J, et al. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 1997 ; 11 : 2633–2644. [CrossRef] [PubMed] [Google Scholar]
  34. Barboric M, Yik JHN, Czudnochowski N, et al. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res 2007 ; 35 : 2003–2012. [CrossRef] [PubMed] [Google Scholar]
  35. Bisgrove DA, Mahmoudi T, Henklein P, et al. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc Natl Acad Sci USA 2007 ; 104 : 13690–13695. [CrossRef] [Google Scholar]
  36. Lu P, Qu X, Shen Y, et al. The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep 2016 ; 6 : 24100. [CrossRef] [PubMed] [Google Scholar]
  37. Wang X, Helfer CM, Pancholi N, et al. Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J Virol 2013 ; 87 : 3871–3884. [CrossRef] [PubMed] [Google Scholar]
  38. Palermo RD, Webb HM, West MJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog 2011 ; 7 : e1002334. [CrossRef] [PubMed] [Google Scholar]
  39. Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. BioEssays News Rev Mol Cell Dev Biol 2016 ; 38 (suppl 1) : S75–S85. [CrossRef] [Google Scholar]
  40. Rahl PB, Lin CY, Seila AC, et al. c-Myc regulates transcriptional pause release. Cell 2010 ; 141 : 432–45. [CrossRef] [PubMed] [Google Scholar]
  41. Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011 ; 478 : 524–8. [CrossRef] [PubMed] [Google Scholar]
  42. Wang R, Cao X-J, Kulej K, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci USA 2017 ; 114 : E5352–E5361. [CrossRef] [Google Scholar]
  43. Yokoyama A, Lin M, Naresh A, et al. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 2010 ; 17 : 198–212. [CrossRef] [PubMed] [Google Scholar]
  44. Holkova B, Kmieciak M, Perkins EB, et al. Phase I trial of bortezomib (PS-341 ; NSC 681239) and nonhybrid (bolus) infusion schedule of alvocidib (flavopiridol ; NSC 649890) in patients with recurrent or refractory indolent B-cell neoplasms. Clin Cancer Res 2014 ; 20 : 5652–5662. [CrossRef] [PubMed] [Google Scholar]
  45. Zeidner JF, Foster MC, Blackford AL, et al. Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7+3) in newly diagnosed acute myeloid leukemia. Haematologica 2015 ; 100 : 1172–1179. [CrossRef] [PubMed] [Google Scholar]
  46. Stathis A, Zucca E, Bekradda M, et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov 2016 ; 6 : 492–500. [CrossRef] [PubMed] [Google Scholar]
  47. Amorim S, Stathis A, Gleeson M, et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma : a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol 2016 ; 3 : e196–e204. [CrossRef] [PubMed] [Google Scholar]
  48. Morales F, Giordano A. Overview of CDK9 as a target in cancer research. Cell Cycle Georget Tex 2016 ; 15 : 519–527. [CrossRef] [Google Scholar]
  49. Stathis A, Bertoni F. BET Proteins as targets for anticancer treatment. Cancer Discov 2018 ;8 : 24–36. [CrossRef] [PubMed] [Google Scholar]
  50. Matzuk MM, McKeown MR, Filippakopoulos P, et al. Small-molecule inhibition of BRDT for male contraception. Cell 2012 ; 150 : 673–684. [CrossRef] [PubMed] [Google Scholar]
  51. Bolden JE, Tasdemir N, Dow LE, et al. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep 2014 ; 8 : 1919–1929. [CrossRef] [PubMed] [Google Scholar]
  52. Mele DA, Salmeron A, Ghosh S, et al. BET bromodomain inhibition suppresses TH17-mediated pathology. J Exp Med 2013 ; 210 : 2181–2190. [CrossRef] [PubMed] [Google Scholar]
  53. Dujardin G, Daguenet E, Bernard DG, et al. L’épissage des ARN pré-messagers : quand le splicéosome perd pied. Med Sci (Paris) 2016 ; 32 : 1103–1110. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.