Open Access
Numéro
Med Sci (Paris)
Volume 34, Numéro 8-9, Août–Septembre 2018
Les Cahiers de Myologie
Page(s) 671 - 677
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183408013
Publié en ligne 19 septembre 2018
  1. Kuhn JH. Guide to the correct use of filoviral nomenclature. Curr Top Microbiol Immunol 2017 ; 411 : 447–460. [PubMed] [Google Scholar]
  2. Baize S, Pannetier D, Oestereich L, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 2014 ; 371 : 1418–1425. [Google Scholar]
  3. Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol 2016 ; 16 : 566–580. [CrossRef] [PubMed] [Google Scholar]
  4. Kowalinski E, Lunardi T, McCarthy AA, et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011 ; 147 : 423–435. [CrossRef] [PubMed] [Google Scholar]
  5. Jiang X, Kinch LN, Brautigam CA, et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 2012 ; 36 : 959–973. [CrossRef] [PubMed] [Google Scholar]
  6. Devarkar SC, Wang C, Miller MT, et al. Structural basis for m7G recognition and 2’-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc Natl Acad Sci USA 2016 ; 113 : 596–601. [CrossRef] [Google Scholar]
  7. Uchikawa E, Lethier M, Malet H, et al. Structural analysis of dsRNA binding to anti-viral pattern recognition receptors LGP2 and MDA5. Mol Cell 2016 ; 62 : 586–602. [CrossRef] [PubMed] [Google Scholar]
  8. Wu B, Peisley A, Richards C, et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 2013 ; 152 : 276–289. [CrossRef] [PubMed] [Google Scholar]
  9. Rodriguez KR, Bruns AM, Horvath CM. MDA5 and LGP2 : accomplices and antagonists of antiviral signal transduction. J Virol 2014 ; 88 : 8194–8200. [CrossRef] [PubMed] [Google Scholar]
  10. Zhang Z, Ohto U, Shimizu T. Toward a structural understanding of nucleic acid-sensing Toll-like receptors in the innate immune system. FEBS Lett 2017 ; 591 : 3167–3181. [CrossRef] [PubMed] [Google Scholar]
  11. Fensterl V, Chattopadhyay S, Sen GC. No love lost between viruses and interferons. Annu Rev Virol 2015 ; 2 : 549–572. [CrossRef] [PubMed] [Google Scholar]
  12. Satoh T, Akira S. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr 2016 ; 4. [Google Scholar]
  13. Wang BX, Fish EN. The yin and yang of viruses and interferons. Trends Immunol 2012 ; 33 : 190–197. [CrossRef] [PubMed] [Google Scholar]
  14. García-Sastre A. Ten strategies of interferon evasion by viruses. Cell Host Microbe 2017 ; 22 : 176–184. [CrossRef] [PubMed] [Google Scholar]
  15. Martin B, Canard B, Decroly E. Filovirus proteins for antiviral drug discovery : structure/function bases of the replication cycle. Antiviral Res 2017 ; 141 : 48–61. [CrossRef] [PubMed] [Google Scholar]
  16. Leung DW, Prins KC, Basler CF, Amarasinghe GK. Ebolavirus VP35 is a multifunctional virulence factor. Virulence 2010 ; 1 : 526–531. [CrossRef] [PubMed] [Google Scholar]
  17. Ramanan P, Edwards MR, Shabman RS, et al. Structural basis for Marburg virus VP35-mediated immune evasion mechanisms. Proc Natl Acad Sci USA 2012 ; 109 : 20661–20666. [CrossRef] [Google Scholar]
  18. Edwards MR, Liu G, Mire CE, et al. Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins. Cell Rep 2016 ; 14 : 1632–1640. [CrossRef] [PubMed] [Google Scholar]
  19. Prins KC, Binning JM, Shabman RS, et al. Basic residues within the ebolavirus VP35 protein are required for its viral polymerase cofactor function. J Virol 2010 ; 84 : 10581–91. [CrossRef] [PubMed] [Google Scholar]
  20. Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion : insights from Ebola virus and Marburg virus. Nat Rev Microbiol 2015 ; 13 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  21. Kok KH, Lui PY, Ng MH, et al. The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response. Cell Host Microbe 2011 ; 9 : 299–309. [CrossRef] [PubMed] [Google Scholar]
  22. Prins KC, Cárdenas WB, Basler CF. Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J Virol 2009 ; 83 : 3069–3077. [CrossRef] [PubMed] [Google Scholar]
  23. Chang TH, Kubota T, Matsuoka M, et al. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog 2009 ; 5 : e1000493. [CrossRef] [PubMed] [Google Scholar]
  24. Martin B, Reynard O, Volchkov V, Decroly E. Filovirus proteins for antiviral drug discovery : Structure/function of proteins involved in assembly and budding. Antiviral Res 2018 ; 150 : 183–192. [CrossRef] [PubMed] [Google Scholar]
  25. Reid SP, Leung LW, Hartman AL, et al. Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 2006 ; 80 : 5156–5167. [CrossRef] [PubMed] [Google Scholar]
  26. Reid SP, Valmas C, Martinez O, et al. Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 2007 ; 81 : 13469–13477. [CrossRef] [PubMed] [Google Scholar]
  27. Xu W, Edwards MR, Borek DM, et al. Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 2014 ; 16 : 187–200. [CrossRef] [PubMed] [Google Scholar]
  28. Valmas C, Grosch MN, Schümann M, et al. Marburg virus evades interferon responses by a mechanism distinct from ebola virus. PLoS Pathog 2010 ; 6 : e1000721. [CrossRef] [PubMed] [Google Scholar]
  29. Feng Z, Cerveny M, Yan Z, He B. The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR. J Virol 2007 ; 81 : 182–192. [CrossRef] [PubMed] [Google Scholar]
  30. Kühl A, Banning C, Marzi A, et al. The Ebola virus glycoprotein and HIV-1 Vpu employ different strategies to counteract the antiviral factor tetherin. J Infect Dis 2011 ; 204 (suppl 3) : S850–s860. [CrossRef] [PubMed] [Google Scholar]
  31. Lopez LA, Yang SJ, Exline CM, et al. Anti-tetherin activities of HIV-1 Vpu and Ebola virus glycoprotein do not involve removal of tetherin from lipid rafts. J Virol 2012 ; 86 : 5467–5480. [CrossRef] [PubMed] [Google Scholar]
  32. Shabman RS, Hoenen T, Groseth A, et al. An upstream open reading frame modulates ebola virus polymerase translation and virus replication. PLoS Pathog 2013 ; 9 : e1003147. [CrossRef] [PubMed] [Google Scholar]
  33. Wek RC, Jiang HY, Anthony TG. Coping with stress : eIF2 kinases and translational control. Biochem Soc Trans 2006 ; 34 : 7–11. [CrossRef] [PubMed] [Google Scholar]
  34. Page A, Volchkova VA, Reid SP, et al. Marburgvirus hijacks nrf2-dependent pathway by targeting nrf2-negative regulator keap1. Cell Rep 2014 ; 6 : 1026–1036. [CrossRef] [PubMed] [Google Scholar]
  35. Edwards MR, Johnson B, Mire CE, et al. The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell Rep 2014 ; 6 : 1017–1025. [CrossRef] [PubMed] [Google Scholar]
  36. Copple IM. The Keap1-Nrf2 cell defense pathway : a promising therapeutic target? Adv Pharmacol 2012 ; 63 : 43–79. [CrossRef] [PubMed] [Google Scholar]
  37. Edwards MR, Basler CF. Marburg Virus VP24 protein relieves suppression of the NF-κB pathway through interaction with Kelch-like ECH-Associated Protein 1. J Infect Dis 2015 ; 212 (suppl 2) : S154–S159. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.