Free Access
Med Sci (Paris)
Volume 34, Number 8-9, Août–Septembre 2018
Les Cahiers de Myologie
Page(s) 665 - 670
Section M/S Revues
Published online 19 September 2018
  1. Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995 ; 3 : 459–473. [CrossRef] [PubMed] [Google Scholar]
  2. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997 ; 91 : 661–672. [CrossRef] [PubMed] [Google Scholar]
  3. Cao X, Shores EW, Hu-Li J, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 1995 ; 2 : 223–238. [CrossRef] [PubMed] [Google Scholar]
  4. DiSanto JP, Muller W, Guy-Grand D, et al. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA 1995 ; 92 : 377–381. [CrossRef] [Google Scholar]
  5. Noguchi M, Yi H, Rosenblatt HM, et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 1993 ; 73 : 147–157. [CrossRef] [PubMed] [Google Scholar]
  6. Macchi P, Villa A, Giliani S, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995 ; 377 : 65–8. [CrossRef] [PubMed] [Google Scholar]
  7. Park SY, Saijo K, Takahashi T, et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 1995 ; 3 : 771–782. [CrossRef] [PubMed] [Google Scholar]
  8. Russell SM, Tayebi N, Nakajima H, et al. Mutation of Jak3 in a patient with SCID : essential role of Jak3 in lymphoid development. Science 1995 ; 270 : 797–800. [Google Scholar]
  9. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991 ; 66 : 649–661. [CrossRef] [PubMed] [Google Scholar]
  10. Radtke F, Wilson A, Stark G, et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999 ; 10 : 547–558. [CrossRef] [PubMed] [Google Scholar]
  11. Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 1989 ; 86 : 3828–3832. [CrossRef] [Google Scholar]
  12. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989 ; 321 : 1174–1178. [Google Scholar]
  13. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983 ; 301 : 527–530. [CrossRef] [PubMed] [Google Scholar]
  14. Ishikawa F, Yasukawa M, Lyons B, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 2005 ; 106 : 1565–173. [Google Scholar]
  15. Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005 ; 174 : 6477–89. [CrossRef] [PubMed] [Google Scholar]
  16. Gimeno R, Weijer K, Voordouw A, et al. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- gammac-/- mice : functional inactivation of p53 in developing T cells. Blood 2004 ; 104 : 3886–3893. [Google Scholar]
  17. Traggiai E, Chicha L, Mazzucchelli L, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004 ; 304 : 104–107. [Google Scholar]
  18. Lapidot T, Pflumio F, Doedens M, et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992 ; 255 : 1137–1141. [Google Scholar]
  19. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994 ; 367 : 645–648. [CrossRef] [PubMed] [Google Scholar]
  20. Civin CI, Strauss LC, Brovall C, et al. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984 ; 133 : 157–165. [PubMed] [Google Scholar]
  21. Berenson RJ, Andrews RG, Bensinger WI, et al. Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 1988 ; 81 : 951–955. [CrossRef] [PubMed] [Google Scholar]
  22. Fritsch G, Buchinger P, Printz D, et al. Rapid discrimination of early CD34+ myeloid progenitors using CD45-RA analysis. Blood 1993 ; 81 : 2301–2309. [Google Scholar]
  23. Galy AH, Cen D, Travis M, et al. Delineation of T-progenitor cell activity within the CD34+ compartment of adult bone marrow. Blood 1995 ; 85 : 2770–2778. [Google Scholar]
  24. Alhaj Hussen K, Vu Manh TP, Guimiot F, et al. Molecular and functional characterization of lymphoid progenitor subsets reveals a bipartite architecture of human lymphopoiesis. Immunity 2017 ; 47 : 680–696e8. [CrossRef] [PubMed] [Google Scholar]
  25. Canque B, Camus S, Dalloul A, et al. Characterization of dendritic cell differentiation pathways from cord blood CD34+CD7+CD45RA+ hematopoietic progenitor cells. Blood 2000 ; 96 : 3748–3756. [Google Scholar]
  26. Haddad R, Guardiola P, Izac B, et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood 2004 ; 104 : 3918–3926. [Google Scholar]
  27. Hao QL, Zhu J, Price MA, et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood 2001 ; 97 : 3683–3690. [Google Scholar]
  28. Hoebeke I, De Smedt M, Stolz F, et al. T-, B- and NK-lymphoid, but not myeloid cells arise from human CD34+CD38-CD7+ common lymphoid progenitors expressing lymphoid-specific genes. Leukemia 2007 ; 21 : 311–319. [CrossRef] [PubMed] [Google Scholar]
  29. Doulatov S, Notta F, Eppert K, et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol 2010 ; 11 : 585–593. [CrossRef] [PubMed] [Google Scholar]
  30. Haddad R, Guimiot F, Six E, et al. Dynamics of thymus-colonizing cells during human development. Immunity 2006 ; 24 : 217–230. [CrossRef] [PubMed] [Google Scholar]
  31. Parietti V, Nelson E, Telliam G, et al. Dynamics of human prothymocytes and xenogeneic thymopoiesis in hematopoietic stem cell-engrafted nonobese diabetic-SCID/IL-2rgammanull mice. J Immunol 2012 ; 189 : 1648–1660. [CrossRef] [PubMed] [Google Scholar]
  32. Berthault C, Ramond C, Burlen-Defranoux O, et al. Asynchronous lineage priming determines commitment to T cell and B cell lineages in fetal liver. Nat Immunol 2017 ; 18 : 1139–1149. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.