Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, Numéro 8-9, Août–Septembre 2018
Les Cahiers de Myologie
Page(s) 665 - 670
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183408012
Publié en ligne 19 septembre 2018
  1. Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995 ; 3 : 459–473. [CrossRef] [PubMed] [Google Scholar]
  2. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997 ; 91 : 661–672. [CrossRef] [PubMed] [Google Scholar]
  3. Cao X, Shores EW, Hu-Li J, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 1995 ; 2 : 223–238. [CrossRef] [PubMed] [Google Scholar]
  4. DiSanto JP, Muller W, Guy-Grand D, et al. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA 1995 ; 92 : 377–381. [CrossRef] [Google Scholar]
  5. Noguchi M, Yi H, Rosenblatt HM, et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 1993 ; 73 : 147–157. [CrossRef] [PubMed] [Google Scholar]
  6. Macchi P, Villa A, Giliani S, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995 ; 377 : 65–8. [CrossRef] [PubMed] [Google Scholar]
  7. Park SY, Saijo K, Takahashi T, et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 1995 ; 3 : 771–782. [CrossRef] [PubMed] [Google Scholar]
  8. Russell SM, Tayebi N, Nakajima H, et al. Mutation of Jak3 in a patient with SCID : essential role of Jak3 in lymphoid development. Science 1995 ; 270 : 797–800. [Google Scholar]
  9. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991 ; 66 : 649–661. [CrossRef] [PubMed] [Google Scholar]
  10. Radtke F, Wilson A, Stark G, et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999 ; 10 : 547–558. [CrossRef] [PubMed] [Google Scholar]
  11. Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 1989 ; 86 : 3828–3832. [CrossRef] [Google Scholar]
  12. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989 ; 321 : 1174–1178. [Google Scholar]
  13. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983 ; 301 : 527–530. [CrossRef] [PubMed] [Google Scholar]
  14. Ishikawa F, Yasukawa M, Lyons B, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 2005 ; 106 : 1565–173. [Google Scholar]
  15. Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005 ; 174 : 6477–89. [CrossRef] [PubMed] [Google Scholar]
  16. Gimeno R, Weijer K, Voordouw A, et al. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- gammac-/- mice : functional inactivation of p53 in developing T cells. Blood 2004 ; 104 : 3886–3893. [Google Scholar]
  17. Traggiai E, Chicha L, Mazzucchelli L, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004 ; 304 : 104–107. [Google Scholar]
  18. Lapidot T, Pflumio F, Doedens M, et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992 ; 255 : 1137–1141. [Google Scholar]
  19. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994 ; 367 : 645–648. [CrossRef] [PubMed] [Google Scholar]
  20. Civin CI, Strauss LC, Brovall C, et al. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984 ; 133 : 157–165. [PubMed] [Google Scholar]
  21. Berenson RJ, Andrews RG, Bensinger WI, et al. Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 1988 ; 81 : 951–955. [CrossRef] [PubMed] [Google Scholar]
  22. Fritsch G, Buchinger P, Printz D, et al. Rapid discrimination of early CD34+ myeloid progenitors using CD45-RA analysis. Blood 1993 ; 81 : 2301–2309. [Google Scholar]
  23. Galy AH, Cen D, Travis M, et al. Delineation of T-progenitor cell activity within the CD34+ compartment of adult bone marrow. Blood 1995 ; 85 : 2770–2778. [Google Scholar]
  24. Alhaj Hussen K, Vu Manh TP, Guimiot F, et al. Molecular and functional characterization of lymphoid progenitor subsets reveals a bipartite architecture of human lymphopoiesis. Immunity 2017 ; 47 : 680–696e8. [CrossRef] [PubMed] [Google Scholar]
  25. Canque B, Camus S, Dalloul A, et al. Characterization of dendritic cell differentiation pathways from cord blood CD34+CD7+CD45RA+ hematopoietic progenitor cells. Blood 2000 ; 96 : 3748–3756. [Google Scholar]
  26. Haddad R, Guardiola P, Izac B, et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood 2004 ; 104 : 3918–3926. [Google Scholar]
  27. Hao QL, Zhu J, Price MA, et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood 2001 ; 97 : 3683–3690. [Google Scholar]
  28. Hoebeke I, De Smedt M, Stolz F, et al. T-, B- and NK-lymphoid, but not myeloid cells arise from human CD34+CD38-CD7+ common lymphoid progenitors expressing lymphoid-specific genes. Leukemia 2007 ; 21 : 311–319. [CrossRef] [PubMed] [Google Scholar]
  29. Doulatov S, Notta F, Eppert K, et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol 2010 ; 11 : 585–593. [CrossRef] [PubMed] [Google Scholar]
  30. Haddad R, Guimiot F, Six E, et al. Dynamics of thymus-colonizing cells during human development. Immunity 2006 ; 24 : 217–230. [CrossRef] [PubMed] [Google Scholar]
  31. Parietti V, Nelson E, Telliam G, et al. Dynamics of human prothymocytes and xenogeneic thymopoiesis in hematopoietic stem cell-engrafted nonobese diabetic-SCID/IL-2rgammanull mice. J Immunol 2012 ; 189 : 1648–1660. [CrossRef] [PubMed] [Google Scholar]
  32. Berthault C, Ramond C, Burlen-Defranoux O, et al. Asynchronous lineage priming determines commitment to T cell and B cell lineages in fetal liver. Nat Immunol 2017 ; 18 : 1139–1149. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.