Free Access
Issue
Med Sci (Paris)
Volume 34, Number 3, Mars 2018
Page(s) 247 - 252
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183403013
Published online 16 March 2018
  1. Carey MA, Card JW, Voltz JW, et al. It’s all about sex: gender, lung development and lung disease. Trends Endocrinol Metab 2007; 18 : 308-13. [CrossRef] [PubMed] [Google Scholar]
  2. Almqvist C, Worm M, Leynaert B, working group of GALENWPG. Impact of gender on asthma in childhood and adolescence: a GA2LEN review. Allergy 2008; 63 : 47-57. [PubMed] [Google Scholar]
  3. Holgate ST, Wenzel S, Postma DS, et al. Asthma. Nat Rev Dis Primers 2015; 1 : 15025. [CrossRef] [Google Scholar]
  4. Townsend EA, Miller VM, Prakash YS. Sex differences and sex steroids in lung health and disease. Endocr Rev 2012; 33 : 1-47. [CrossRef] [PubMed] [Google Scholar]
  5. Lambrecht BN, Hammad H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol 2017; 18 : 1076-83. [CrossRef] [PubMed] [Google Scholar]
  6. Markle JG, Frank DN, Mortin-Toth S, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013; 339 : 1084-8. [CrossRef] [PubMed] [Google Scholar]
  7. Yurkovetskiy L, Burrows M, Khan AA, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity 2013; 39 : 400-12. [CrossRef] [PubMed] [Google Scholar]
  8. Keselman A, Heller N. Estrogen signaling modulates allergic inflammation and contributes to sex differences in asthma. Front Immunol 2015; 6 : 568. [CrossRef] [PubMed] [Google Scholar]
  9. Fuseini H, Newcomb DC. Mechanisms driving gender differences in asthma. Curr Allergy Asthma Rep 2017; 17 : 19. [CrossRef] [PubMed] [Google Scholar]
  10. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2015; 16 : 45-56. [CrossRef] [PubMed] [Google Scholar]
  11. Crinier A, Viant C, Girard-Madoux M, Vivier E. Les cellules lymphoïdes innées. Med Sci (Paris) 2017; 33 : 534-42. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010; 464 : 1367-70. [CrossRef] [PubMed] [Google Scholar]
  13. Martinez-Gonzalez I, Steer CA, Takei F. Lung ILC2s link innate and adaptive responses in allergic inflammation. Trends Immunol 2015; 36 : 189-95. [CrossRef] [PubMed] [Google Scholar]
  14. Hoyler T, Klose CS, Souabni A, et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012; 37 : 634-48. [CrossRef] [PubMed] [Google Scholar]
  15. Wong SH, Walker JA, Jolin HE, et al. Transcription factor RORalpha is critical for nuocyte development. Nat Immunol 2012; 13 : 229-36. [CrossRef] [PubMed] [Google Scholar]
  16. Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28 : 29-39. [CrossRef] [PubMed] [Google Scholar]
  17. Halim TY, Steer CA, Matha L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 2014; 40 : 425-35. [CrossRef] [PubMed] [Google Scholar]
  18. Doherty TA, Khorram N, Lund S, et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 2013; 132 : 205-13. [CrossRef] [PubMed] [Google Scholar]
  19. Xue L, Salimi M, Panse I, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol 2014; 133 : 1184-94. [CrossRef] [PubMed] [Google Scholar]
  20. Wojno ED, Monticelli LA, Tran SV, et al. The prostaglandin D(2) receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol 2015; 8 : 1313-23. [CrossRef] [Google Scholar]
  21. von Moltke J, O’Leary CE, Barrett NA, et al. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. J Exp Med 2017; 214 : 27-37. [CrossRef] [PubMed] [Google Scholar]
  22. Barnig C, Cernadas M, Dutile S, et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci TranslMed 2013; 5 : 174ra26. [Google Scholar]
  23. Gold MJ, Antignano F, Halim TY, et al. Group 2 innate lymphoid cells facilitate sensitization to local, butnot systemic, TH2-inducing allergen exposures. J Allergy Clin Immunol 2014; 133 : 1142-8. [CrossRef] [PubMed] [Google Scholar]
  24. Nicolai T, Pereszlenyiova-Bliznakova L, Illi S, et al. Longitudinal follow-up of the changing gender ratio in asthma from childhood to adulthood: role of delayed manifestation in girls. Pediatr Allergy Immunol 2003; 14 : 280-3. [CrossRef] [PubMed] [Google Scholar]
  25. Arshad SH, Raza A, Lau L, et al. Pathophysiological characterization of asthma transitions across adolescence. Respir Res 2014; 15 : 153. [CrossRef] [PubMed] [Google Scholar]
  26. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016; 16 : 626-38. [CrossRef] [PubMed] [Google Scholar]
  27. Kissick HT, Sanda MG, Dunn LK, et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc Nat! Acad Sci USA 2014; 111 : 9887-92. [CrossRef] [Google Scholar]
  28. Melgert BN, Postma DS, Kuipers I, et al. Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clin Exp Allergy 2005; 35 : 1496-503. [CrossRef] [PubMed] [Google Scholar]
  29. Blacquiere MJ, Hylkema MN, Postma DS, et al. Airway inflammation and remodeling in two mouse models of asthma: comparison of males and females. Int Arch Allergy Immunol 2010; 153 : 173-81. [CrossRef] [PubMed] [Google Scholar]
  30. Takeda M, Tanabe M, Ito W, et al. Gender difference in allergic airway remodelling and immunoglobulin production in mouse model of asthma. Respirology 2013; 18 : 797-806. [CrossRef] [PubMed] [Google Scholar]
  31. Hayashi T, Adachi Y, Hasegawa K, Morimoto M. Less sensitivity for late airway inflammation in males than females in BALB/c mice. Scand J Immunol 2003; 57 : 562-7. [CrossRef] [PubMed] [Google Scholar]
  32. Liou CJ, Huang WC. Dehydroepiandrosterone suppresses eosinophil infiltration and airway hyperresponsiveness via modulation of chemokines and Th2 cytokines in ovalbumin-sensitized mice. J Clin Immunol 2011; 31 : 656-65. [CrossRef] [PubMed] [Google Scholar]
  33. Riffo-Vasquez Y, Ligeiro de Oliveira AP, Page CP, et al. Role of sex hormones in allergic inflammation in mice. Clin Exp Allergy 2007; 37 : 459-70. [CrossRef] [PubMed] [Google Scholar]
  34. Couse JF, Lindzey J, Grandien K, et al. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 1997; 138 : 4613-21. [CrossRef] [PubMed] [Google Scholar]
  35. Carey MA, Card JW, Bradbury JA, et al. Spontaneous airway hyperresponsiveness in estrogen receptor-alpha-deficient mice. Am J Respir Crit Care Med 2007; 175 : 126-35. [CrossRef] [PubMed] [Google Scholar]
  36. Dimitropoulou C, Drakopanagiotakis F, Chatterjee A, et al. Estrogen replacement therapy prevents airway dysfunction in a murine model of allergen-induced asthma. Lung 2009; 187 : 116-27. [CrossRef] [PubMed] [Google Scholar]
  37. Laffont S, Garnier L, Lelu K, Guery JC. Estrogen-mediated protection of experimental autoimmune encephalomyelitis: Lessons from the dissection of estrogen receptor-signaling in vivo. BiomedJ 2015; 38 : 194-205. [CrossRef] [Google Scholar]
  38. Laffont S, Seillet C, Guery JC. Estrogen receptor-dependent regulation of dendritic cell development and function. Front Immunol 2017; 8 : 108. [PubMed] [Google Scholar]
  39. Melgert BN, Oriss TB, Qi Z, et al. Macrophages: regulators of sex differences in asthma? Am J Respir Cell Mol Biol 2010; 42 : 595-603. [CrossRef] [Google Scholar]
  40. Warren KJ, Sweeter JM, Pavlik JA, et al. Sex differences in activation of lung-related type 2 innate lymphoid cells in experimental asthma. Ann Allergy Asthma Immunol 2017; 118 : 233-34. [CrossRef] [PubMed] [Google Scholar]
  41. Laffont S, Blanquart E, Savignac M, et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J Exp Med 2017; 214 : 1581-92. [CrossRef] [PubMed] [Google Scholar]
  42. Cephus J-Y, Stier MT, Fuseini H, et al. Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep 2017; 21 : 2487-99. [CrossRef] [PubMed] [Google Scholar]
  43. Robinette ML, Fuchs A, Cortez VS, et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol 2015; 16 : 306-17. [CrossRef] [PubMed] [Google Scholar]
  44. Vivier E, van de Pavert SA, Cooper MD, Belz GT. The evolution of innate lymphoid cells. Nat Immunol 2016; 17 : 790-4. [CrossRef] [PubMed] [Google Scholar]
  45. Gasteiger G, Fan X, Dikiy S, et al. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 2015; 350 : 981-5. [CrossRef] [PubMed] [Google Scholar]
  46. Warren KJ, Sweeter JM, Pavlik JA, et al. Sex differences in activation of lung-related type 2 innate lymphoid cells in experimental asthma. Ann Allergy Asthma Immunol 2017; 118 : 233-4. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.