Free Access
Issue
Med Sci (Paris)
Volume 34, Number 3, Mars 2018
Page(s) 253 - 260
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183403014
Published online 16 March 2018
  1. Veillon A. Sur un microcoque anaérobe trouvé dans des suppurations fétides. CRSoc Biol 1893; 5 : 807-9. [Google Scholar]
  2. Dickson RP, Huffnagle GB. The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog 2015; 11 : e1004923. [CrossRef] [PubMed] [Google Scholar]
  3. Wylie KM. The virome of the human respiratory tract. Clin Chest Med 2017; 38 : 11-9. [CrossRef] [PubMed] [Google Scholar]
  4. Mitchell AB, Oliver BGG, Glanville AR. Translational aspects of the human respiratory virome. Am J Respir Crit Care Med 2016; 194 : 1458-64. [CrossRef] [PubMed] [Google Scholar]
  5. Nguyen LDN, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 2015; 6 : 89. [PubMed] [Google Scholar]
  6. O'Neill K, Bradley JM, Johnston E, et al. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis. PloS One 2015; 10 :e0126980. [CrossRef] [PubMed] [Google Scholar]
  7. Marsland BJ, Gollwitzer ES. Host-microorganism interactions in lung diseases. Nat Rev Immunol 2014; 14 : 827-35. [CrossRef] [PubMed] [Google Scholar]
  8. Sibley CD, Grinwis ME, Field TR, et al. Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS One 2011; 6 : e22702. [CrossRef] [PubMed] [Google Scholar]
  9. Société Française de Microbiologie. Référentiel en microbiologie médicale. Paris : SFM, 2015 : 390 p. [Google Scholar]
  10. Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011; 184 : 957-63. [CrossRef] [PubMed] [Google Scholar]
  11. Charlson ES, Chen J, Custers-Allen R, et al. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PloS One 2010; 5 : e15216. [CrossRef] [PubMed] [Google Scholar]
  12. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107 : 11971-75. [CrossRef] [Google Scholar]
  13. Lal CV, Travers C, Aghai ZH, et al. The airway microbiome at birth. Sci Rep 2016; 6 : 31023. [CrossRef] [PubMed] [Google Scholar]
  14. Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6 : 237ra65. [Google Scholar]
  15. Pezzulo AA, Kelly PH, Nassar BS, et al. Abundant DNase I-sensitive bacterial DNA in healthy porcine lungs and its implications for the lung microbiome. Appl Environ Microbiol 2013; 79 : 5936-41. [Google Scholar]
  16. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PloS One 2010; 5 : e8578. [CrossRef] [PubMed] [Google Scholar]
  17. Bowers RM, Sullivan AP, Costello EK, et al. Sources of bacteria in outdoor air across cities in the midwestern United States. Appl Environ Microbiol 2011; 77 : 6350-56. [Google Scholar]
  18. Lemon KP, Klepac-Ceraj V, Schiffer HK, et al. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. mBio 2010; 1 : e00129-10. [PubMed] [Google Scholar]
  19. Dickson RP, Erb-Downward JR, Freeman CM, et al. Bacterial topography of the healthy human lower respiratory tract. mBio 2017; 8 : e02287-16. [CrossRef] [PubMed] [Google Scholar]
  20. Al-momani H, Perry A, Stewart CJ, et al. Microbiological profiles of sputum and gastric juice aspirates in Cystic Fibrosis patients. Sci Rep 2016; 6 : 26985. [CrossRef] [PubMed] [Google Scholar]
  21. Young VB. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 2017; 356 : j831. [Google Scholar]
  22. Kostric M, Milger K, Krauss-Etschmann S, et al. Development of a stable lung microbiome in healthy neonatal mice. Microb Ecol 2018; 75 : 529-42. [Google Scholar]
  23. Coburn B, Wang PW, Diaz Caballero J, et al. Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep 2015; 5 : 10241. [CrossRef] [PubMed] [Google Scholar]
  24. Zhang Q, Cox M, Liang Z, et al. Airway microbiota in severe asthma and relationship to asthma severity and phenotypes. PloS One 2016; 11 : e0152724. [CrossRef] [PubMed] [Google Scholar]
  25. Sze MA, Hogg JC, Sin DD. Bacterial microbiome of lungs in COPD. Int J Chron Obstruct Pulmon Dis 2014; 9 : 229-38. [PubMed] [Google Scholar]
  26. Worlitzsch D, Tarran R, Ulrich M, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002; 109 : 317-25. [CrossRef] [PubMed] [Google Scholar]
  27. Worlitzsch D, Rintelen C, Bohm K, et al. Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients. Clin Microbiol Infect 2009; 15 : 454-60. [CrossRef] [PubMed] [Google Scholar]
  28. Tunney MM, Field TR, Moriarty TF, et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 2008; 177 : 995-1001. [CrossRef] [PubMed] [Google Scholar]
  29. Rogers GB, Carroll MP, Serisier DJ, et al. Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. J Clin Microbiol 2006; 44 : 2601-4. [CrossRef] [PubMed] [Google Scholar]
  30. Lambiase A, Catania MR, Rossano F. Anaerobic bacteria infection in cystic fibrosis airway disease. New Microbiol 2010; 33 : 185-94. [PubMed] [Google Scholar]
  31. Madan JC. Neonatal gastrointestinal and respiratory microbiome in cystic fibrosis: potential interactions and implications for systemic health. Clin Ther 2016; 38 : 740-6. [CrossRef] [PubMed] [Google Scholar]
  32. Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the "healthy" smoker and in COPD. PloS One 2011; 6 : e16384. [CrossRef] [PubMed] [Google Scholar]
  33. Bernarde C, Keravec M, Mounier J, et al. Impact of the CFTR-potentiator ivacaftor on airway microbiota in cystic fibrosis patients carrying a G551D mutation. PloS One 2015; 10 : e0124124. [Google Scholar]
  34. Sze MA, Dimitriu PA, Hayashi S, et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 185 : 107380. [Google Scholar]
  35. Pragman AA, Kim HB, Reilly CS, et al. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PloS One 2012; 7 : e47305. [CrossRef] [PubMed] [Google Scholar]
  36. Sze MA, Dimitriu PA, Suzuki M, et al. Host response to the lung microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015; 192 : 438-45. [CrossRef] [PubMed] [Google Scholar]
  37. Stokell JR, Gharaibeh RZ, Hamp TJ, et al. Analysis of changes in diversity and abundance of the microbial community in a cystic fibrosis patient over a multiyear period. J Clin Microbiol 2015; 53 : 237-47. [CrossRef] [PubMed] [Google Scholar]
  38. Mirkovic B, Murray MA, Lavelle GM, et al. The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway. Am J Respir Crit Care Med 2015; 192 : 1314-24. [CrossRef] [PubMed] [Google Scholar]
  39. Sun M, Wu W, Liu Z, et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol 2017; 52 : 1-8. [CrossRef] [PubMed] [Google Scholar]
  40. Pustelny C, Komor U, Pawar V, et al. Contribution of Veillonella parvula to Pseudomonas aeruginosa-mediated pathogenicity in a murine tumor model system. infect immun 2015; 83 : 417-29. [CrossRef] [PubMed] [Google Scholar]
  41. Whiley RA, Fleming EV, Makhija R, et al. Environment and colonisation sequence are key parameters driving cooperation and competition between Pseudomonas aeruginosa cystic fibrosis strains and oral commensal streptococci. PloS One 2015; 10 : e0115513. [Google Scholar]
  42. Einarsson GG, Comer DM, McIlreavey L, et al. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax 2016; 71 : 795-803. [CrossRef] [PubMed] [Google Scholar]
  43. Braun-Fahrländer C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002; 347 : 869-77. [Google Scholar]
  44. Hauptmann M, Schaible UE. Linking microbiota and respiratory disease. FEBS Lett 2016; 590 : 3721-38. [CrossRef] [PubMed] [Google Scholar]
  45. Huang YJ, Nelson CE, Brodie EL, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol 2011; 127 : 372-81. [CrossRef] [PubMed] [Google Scholar]
  46. Zhou Y, Lin F, Cui Z, et al. Correlation between either Cupriavidus or Porphyromonas and primary pulmonary tuberculosis found by analysing the microbiota in patients’ bronchoalveolar lavage fluid. PloS One 2015; 10 : e0124194. [CrossRef] [PubMed] [Google Scholar]
  47. Molyneaux PL, Cox MJ, Will is-Owen SAG, et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2014; 190 : 906-13. [CrossRef] [PubMed] [Google Scholar]
  48. Cuthbertson L, Rogers GB, Walker AW, et al. Respiratory microbiota resistance and resilience to pulmonary exacerbation and subsequent antimicrobial intervention. iSME J 2016; 10 : 1081-91. [CrossRef] [PubMed] [Google Scholar]
  49. Skolnik K, Nguyen A, Somayaji R, et al. Clinical implications and characterization of Group A Streptoccoccus infections in adults with cystic fibrosis. BMC Pulm Med 2015; 15 : 161. [CrossRef] [PubMed] [Google Scholar]
  50. Cookson WOCM, Cox MJ, Moffatt MF. New opportunities for managing acute and chronic lung infections. Nat Rev Microbiol 2018; 16 : 111-120. [CrossRef] [PubMed] [Google Scholar]
  51. Nguyen L, Delhaes L. Un nouveau concept : le mycobiome pulmonaire. Med Sci (Paris) 2015; 31 : 945-7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Andréjak C, Delhaes L. Le microbiome pulmonaire en 2015 : une fenêtre ouverte sur les pathologies pulmonaires chroniques. Med Sci (Paris) 2015; 31 : 971-8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.