Free Access
Issue
Med Sci (Paris)
Volume 34, Number 3, Mars 2018
Page(s) 238 - 246
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183403012
Published online 16 March 2018
  1. Starkstein SE, Mayberg HS, Preziosi TJ, et al. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 1992; 4 : 134-9. [CrossRef] [PubMed] [Google Scholar]
  2. Green L, Myerson J. A discounting framework for choice with delayed and probabilistic rewards. Psychol Bull 2004; 130 : 769-92. [CrossRef] [PubMed] [Google Scholar]
  3. Inzlicht M, Schmeichel BJ, Macrae CN. Why self-control seems (but may not be) limited. Trends Cogn Sci 2014; 18 : 127-33. [CrossRef] [PubMed] [Google Scholar]
  4. Kool W, McGuire JT, Rosen ZB, Botvinick MM. Decision making and the avoidance of cognitive demand. J Exp Psychol Gen 2010; 139 : 665-82. [CrossRef] [PubMed] [Google Scholar]
  5. Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 2007; 191 : 461-82. [CrossRef] [PubMed] [Google Scholar]
  6. Walton ME, Kennerley SW, Bannerman DM, et al. Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw 2006; 19 : 1302-14. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. Minamimoto T, Hori Y, Richmond BJ. Is working more costly than waiting in monkeys? PLoS One 2012; 7 : e48434. [CrossRef] [PubMed] [Google Scholar]
  8. Treadway MT, Buckholtz JW, Schwartzman AN, et al. Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS One 2009; 4 : e6598. [CrossRef] [PubMed] [Google Scholar]
  9. Prevost C, Pessiglione M, Metereau E, et al. Separate valuation subsystems for delay and effort decision costs. J Neurosci 2010; 30 : 14080-90. [CrossRef] [PubMed] [Google Scholar]
  10. Bartra O, McGuire JT, Kable JW. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 2013; 76 : 412-27. [CrossRef] [PubMed] [Google Scholar]
  11. Skvortsova V, Palminteri S, Pessiglione M. Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates. J Neurosci 2014; 34 : 15621-30. [CrossRef] [PubMed] [Google Scholar]
  12. Bonnelle V, Veromann KR, Burnett Heyes S, et al. Characterization of reward and effort mechanisms in apathy. J Physiol Paris 2015; 109 : 16-26. [CrossRef] [PubMed] [Google Scholar]
  13. Massar SA, Libedinsky C, Weiyan C, et al. Separate and overlapping brain areas encode subjective value during delay and effort discounting. Neuroimage 2015; 120 : 104-13. [CrossRef] [PubMed] [Google Scholar]
  14. Knutson B, Fong GW, Adams CM, et al. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 2001; 12 : 3683-7. [CrossRef] [PubMed] [Google Scholar]
  15. Schmidt L, Lebreton M, Clery-Melin ML, et al. Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol 2012; 10 : e1001266. [CrossRef] [PubMed] [Google Scholar]
  16. Pessiglione M, Schmidt L, Draganski B, et al. How the brain translates money into force: a neuroimaging study of subliminal motivation. Science 2007; 316 : 904-6. [CrossRef] [PubMed] [Google Scholar]
  17. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 2003; 26 : 317-30. [CrossRef] [PubMed] [Google Scholar]
  18. Tachibana Y, Hikosaka O. The primate ventral pallidum encodes expected reward value and regulates motor action. Neuron 2012; 76 : 826-37. [CrossRef] [PubMed] [Google Scholar]
  19. Botvinick MM, Huffstetler S, McGuire JT. Effort discounting in human nucleus accumbens. Cogn Affect Behav Neurosci 2009; 9 : 16-27. [CrossRef] [PubMed] [Google Scholar]
  20. Wardle MC, Treadway MT, Mayo LM, et al. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci 2011; 31 : 16597-602. [CrossRef] [PubMed] [Google Scholar]
  21. Venugopalan VV, Casey KF, O’Hara C, et al. Acute phenylalanine/tyrosine depletion reduces motivation to smoke cigarettes across stages of addiction. Neuropsychopharmacology 2011; 36 : 2469-76. [CrossRef] [PubMed] [Google Scholar]
  22. Gan JO, Walton ME, Phillips PE. Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nat Neurosci 2010; 13 : 25-7. [CrossRef] [PubMed] [Google Scholar]
  23. Varazzani C, San-Galli A, Gilardeau S, Bouret S. Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys. J Neurosci 2015; 35 : 7866-77. [CrossRef] [PubMed] [Google Scholar]
  24. Meyniel F, Goodwin GM, Deakin JW, et al. A specific role for serotonin in overcoming effort cost. Elife 2016; 5. [Google Scholar]
  25. Caeiro L, Ferro JM, Costa J. Apathy secondary to stroke: a systematic review and meta-analysis. Cerebrovasc Dis 2013; 35 : 23-39. [CrossRef] [Google Scholar]
  26. Landes AM, Sperry SD, Strauss ME. Prevalence of apathy, dysphoria, and depression in relation to dementia severity in Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 2005; 17 : 342-9. [CrossRef] [PubMed] [Google Scholar]
  27. Arnould A, Rochat L, Azouvi P, Van der Linden M. A multidimensional approach to apathy after traumatic brain injury. Neuropsychol Rev 2013; 23 : 210-33. [CrossRef] [PubMed] [Google Scholar]
  28. van Almenkerk S, Smalbrugge M, Depla MF, et al. Apathy among institutionalized stroke patients: prevalence and clinical correlates. Am J Geriatr Psychiatry 2015; 23 : 180-8. [CrossRef] [PubMed] [Google Scholar]
  29. Samus QM, Rosenblatt A, Steele C, et al. The association of neuropsychiatric symptoms and environment with quality of life in assisted living residents with dementia. Gerontologist 2005; 45 S1 : 19-26. [CrossRef] [PubMed] [Google Scholar]
  30. Thobois S, Ardouin C, Lhommee E, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain 2010; 133 : 1111-27. [CrossRef] [PubMed] [Google Scholar]
  31. Porat O, Hassin-Baer S, Cohen OS, et al. Asymmetric dopamine loss differentially affects effort to maximize gain or minimize loss. Cortex 2014; 51 : 82-91. [CrossRef] [PubMed] [Google Scholar]
  32. Chong TT, Bonnelle V, Husain M. Quantifying motivation with effort-based decision-making paradigms in health and disease. Prog Brain Res 2016; 229 : 71-100. [CrossRef] [PubMed] [Google Scholar]
  33. Le Bouc R, Rigoux L, Schmidt L, et al. Computational dissection of dopamine motor and motivational functions in humans. J Neurosci 2016; 36 : 6623-33. [CrossRef] [PubMed] [Google Scholar]
  34. Laplane D, Dubois B. Auto-Activation deficit: a basal ganglia related syndrome. Mov Disord 2001; 16 : 810-4. [CrossRef] [PubMed] [Google Scholar]
  35. Schmidt L, d’Arc BF, Lafargue G, et al. Disconnecting force from money: effects of basal ganglia damage on incentive motivation. Brain 2008; 131 : 1303-10. [CrossRef] [PubMed] [Google Scholar]
  36. Adam R, Leff A, Sinha N, et al. Dopamine reverses reward insensitivity in apathy following globus pallidus lesions. Cortex 2013; 49 : 1292-303. [CrossRef] [PubMed] [Google Scholar]
  37. Foussias G, Remington G. Negative symptoms in schizophrenia: avolition and Occam’s razor. Schizophr Bull 2010; 36 : 359-69. [CrossRef] [PubMed] [Google Scholar]
  38. Evensen J, Rossberg JI, Barder H, et al. Apathy in first episode psychosis patients: a ten year longitudinal follow-up study. Schizophr Res 2012; 136 : 19-24. [CrossRef] [PubMed] [Google Scholar]
  39. Lam M, Abdul Rashid NA, Lee SA, et al. Baseline social amotivation predicts 1-year functioning in UHR subjects: a validation and prospective investigation. Eur Neuropsychopharmacol 2015; 25 : 2187-96. [CrossRef] [PubMed] [Google Scholar]
  40. Fervaha G, Zakzanis KK, Foussias G, et al. Motivational deficits and cognitive test performance in schizophrenia. JAMA Psychiatry 2014; 71 : 1058-65. [CrossRef] [PubMed] [Google Scholar]
  41. Gold JM, Waltz JA, Prentice KJ, et al. Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull 2008; 34 : 835-47. [CrossRef] [PubMed] [Google Scholar]
  42. Culbreth A, Westbrook A, Barch D. Negative symptoms are associated with an increased subjective cost of cognitive effort. J Abnorm Psychol 2016; 125 : 528-36. [CrossRef] [PubMed] [Google Scholar]
  43. Gold JM, Waltz JA, Frank MJ. Effort cost computation in schizophrenia: a commentary on the recent literature. Biol Psychiatry 2015; 78 :747-53. [CrossRef] [PubMed] [Google Scholar]
  44. Calabrese JR, Fava M, Garibaldi G, et al. Methodological approaches and magnitude of the clinical unmet need associated with amotivation in mood disorders. J Affect Disord 2014; 168 : 439-51. [CrossRef] [PubMed] [Google Scholar]
  45. Eshel N, Roiser JP. Reward and punishment processing in depression. Biol Psychiatry 2010; 68 : 118-24. [CrossRef] [PubMed] [Google Scholar]
  46. Cléry-Melin M-L, Schmidt L, Lafargue G, et al. Why don’t you try harder? An investigation of effort production in major depression. PLoS One 2011; 6 : e23178. [CrossRef] [PubMed] [Google Scholar]
  47. Mauras T, Masson M, Fossati P, Pessiglione M. Incentive sensitivity as a behavioral marker of clinical remission from major depressive episode. J Clin Psychiatry 2016; 77 : e697-703. [CrossRef] [PubMed] [Google Scholar]
  48. Hershenberg R, Satterthwaite TD, Daldal A, et al. Diminished effort on a progressive ratio task in both unipolar and bipolar depression. J Affect Disord 2016; 196 : 97-100. [CrossRef] [PubMed] [Google Scholar]
  49. Yang XH, Huang J, Zhu CY, et al. Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Res 2014; 220 : 874-82. [CrossRef] [PubMed] [Google Scholar]
  50. Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 2011; 35 : 537-55. [CrossRef] [PubMed] [Google Scholar]
  51. Favier M, Carcenac C, Marc Savasta M, Carnicella S. Motivation et apathie parkinsonienne : rôle des récepteurs dopaminergiques RD3. Med Sci (Paris) 2017; 33 : 822-4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.