Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, Numéro 3, Mars 2018
Page(s) 238 - 246
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183403012
Publié en ligne 16 mars 2018
  1. Starkstein SE, Mayberg HS, Preziosi TJ, et al. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 1992; 4 : 134-9. [CrossRef] [PubMed] [Google Scholar]
  2. Green L, Myerson J. A discounting framework for choice with delayed and probabilistic rewards. Psychol Bull 2004; 130 : 769-92. [CrossRef] [PubMed] [Google Scholar]
  3. Inzlicht M, Schmeichel BJ, Macrae CN. Why self-control seems (but may not be) limited. Trends Cogn Sci 2014; 18 : 127-33. [CrossRef] [PubMed] [Google Scholar]
  4. Kool W, McGuire JT, Rosen ZB, Botvinick MM. Decision making and the avoidance of cognitive demand. J Exp Psychol Gen 2010; 139 : 665-82. [CrossRef] [PubMed] [Google Scholar]
  5. Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 2007; 191 : 461-82. [CrossRef] [PubMed] [Google Scholar]
  6. Walton ME, Kennerley SW, Bannerman DM, et al. Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw 2006; 19 : 1302-14. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. Minamimoto T, Hori Y, Richmond BJ. Is working more costly than waiting in monkeys? PLoS One 2012; 7 : e48434. [CrossRef] [PubMed] [Google Scholar]
  8. Treadway MT, Buckholtz JW, Schwartzman AN, et al. Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS One 2009; 4 : e6598. [CrossRef] [PubMed] [Google Scholar]
  9. Prevost C, Pessiglione M, Metereau E, et al. Separate valuation subsystems for delay and effort decision costs. J Neurosci 2010; 30 : 14080-90. [CrossRef] [PubMed] [Google Scholar]
  10. Bartra O, McGuire JT, Kable JW. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 2013; 76 : 412-27. [CrossRef] [PubMed] [Google Scholar]
  11. Skvortsova V, Palminteri S, Pessiglione M. Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates. J Neurosci 2014; 34 : 15621-30. [CrossRef] [PubMed] [Google Scholar]
  12. Bonnelle V, Veromann KR, Burnett Heyes S, et al. Characterization of reward and effort mechanisms in apathy. J Physiol Paris 2015; 109 : 16-26. [CrossRef] [PubMed] [Google Scholar]
  13. Massar SA, Libedinsky C, Weiyan C, et al. Separate and overlapping brain areas encode subjective value during delay and effort discounting. Neuroimage 2015; 120 : 104-13. [CrossRef] [PubMed] [Google Scholar]
  14. Knutson B, Fong GW, Adams CM, et al. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 2001; 12 : 3683-7. [CrossRef] [PubMed] [Google Scholar]
  15. Schmidt L, Lebreton M, Clery-Melin ML, et al. Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol 2012; 10 : e1001266. [CrossRef] [PubMed] [Google Scholar]
  16. Pessiglione M, Schmidt L, Draganski B, et al. How the brain translates money into force: a neuroimaging study of subliminal motivation. Science 2007; 316 : 904-6. [Google Scholar]
  17. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 2003; 26 : 317-30. [CrossRef] [PubMed] [Google Scholar]
  18. Tachibana Y, Hikosaka O. The primate ventral pallidum encodes expected reward value and regulates motor action. Neuron 2012; 76 : 826-37. [CrossRef] [PubMed] [Google Scholar]
  19. Botvinick MM, Huffstetler S, McGuire JT. Effort discounting in human nucleus accumbens. Cogn Affect Behav Neurosci 2009; 9 : 16-27. [CrossRef] [PubMed] [Google Scholar]
  20. Wardle MC, Treadway MT, Mayo LM, et al. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci 2011; 31 : 16597-602. [CrossRef] [PubMed] [Google Scholar]
  21. Venugopalan VV, Casey KF, O’Hara C, et al. Acute phenylalanine/tyrosine depletion reduces motivation to smoke cigarettes across stages of addiction. Neuropsychopharmacology 2011; 36 : 2469-76. [CrossRef] [PubMed] [Google Scholar]
  22. Gan JO, Walton ME, Phillips PE. Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nat Neurosci 2010; 13 : 25-7. [CrossRef] [PubMed] [Google Scholar]
  23. Varazzani C, San-Galli A, Gilardeau S, Bouret S. Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys. J Neurosci 2015; 35 : 7866-77. [CrossRef] [PubMed] [Google Scholar]
  24. Meyniel F, Goodwin GM, Deakin JW, et al. A specific role for serotonin in overcoming effort cost. Elife 2016; 5. [Google Scholar]
  25. Caeiro L, Ferro JM, Costa J. Apathy secondary to stroke: a systematic review and meta-analysis. Cerebrovasc Dis 2013; 35 : 23-39. [Google Scholar]
  26. Landes AM, Sperry SD, Strauss ME. Prevalence of apathy, dysphoria, and depression in relation to dementia severity in Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 2005; 17 : 342-9. [CrossRef] [PubMed] [Google Scholar]
  27. Arnould A, Rochat L, Azouvi P, Van der Linden M. A multidimensional approach to apathy after traumatic brain injury. Neuropsychol Rev 2013; 23 : 210-33. [CrossRef] [PubMed] [Google Scholar]
  28. van Almenkerk S, Smalbrugge M, Depla MF, et al. Apathy among institutionalized stroke patients: prevalence and clinical correlates. Am J Geriatr Psychiatry 2015; 23 : 180-8. [CrossRef] [PubMed] [Google Scholar]
  29. Samus QM, Rosenblatt A, Steele C, et al. The association of neuropsychiatric symptoms and environment with quality of life in assisted living residents with dementia. Gerontologist 2005; 45 S1 : 19-26. [CrossRef] [PubMed] [Google Scholar]
  30. Thobois S, Ardouin C, Lhommee E, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain 2010; 133 : 1111-27. [CrossRef] [PubMed] [Google Scholar]
  31. Porat O, Hassin-Baer S, Cohen OS, et al. Asymmetric dopamine loss differentially affects effort to maximize gain or minimize loss. Cortex 2014; 51 : 82-91. [CrossRef] [PubMed] [Google Scholar]
  32. Chong TT, Bonnelle V, Husain M. Quantifying motivation with effort-based decision-making paradigms in health and disease. Prog Brain Res 2016; 229 : 71-100. [CrossRef] [PubMed] [Google Scholar]
  33. Le Bouc R, Rigoux L, Schmidt L, et al. Computational dissection of dopamine motor and motivational functions in humans. J Neurosci 2016; 36 : 6623-33. [CrossRef] [PubMed] [Google Scholar]
  34. Laplane D, Dubois B. Auto-Activation deficit: a basal ganglia related syndrome. Mov Disord 2001; 16 : 810-4. [CrossRef] [PubMed] [Google Scholar]
  35. Schmidt L, d’Arc BF, Lafargue G, et al. Disconnecting force from money: effects of basal ganglia damage on incentive motivation. Brain 2008; 131 : 1303-10. [CrossRef] [PubMed] [Google Scholar]
  36. Adam R, Leff A, Sinha N, et al. Dopamine reverses reward insensitivity in apathy following globus pallidus lesions. Cortex 2013; 49 : 1292-303. [CrossRef] [PubMed] [Google Scholar]
  37. Foussias G, Remington G. Negative symptoms in schizophrenia: avolition and Occam’s razor. Schizophr Bull 2010; 36 : 359-69. [CrossRef] [PubMed] [Google Scholar]
  38. Evensen J, Rossberg JI, Barder H, et al. Apathy in first episode psychosis patients: a ten year longitudinal follow-up study. Schizophr Res 2012; 136 : 19-24. [CrossRef] [PubMed] [Google Scholar]
  39. Lam M, Abdul Rashid NA, Lee SA, et al. Baseline social amotivation predicts 1-year functioning in UHR subjects: a validation and prospective investigation. Eur Neuropsychopharmacol 2015; 25 : 2187-96. [CrossRef] [PubMed] [Google Scholar]
  40. Fervaha G, Zakzanis KK, Foussias G, et al. Motivational deficits and cognitive test performance in schizophrenia. JAMA Psychiatry 2014; 71 : 1058-65. [CrossRef] [PubMed] [Google Scholar]
  41. Gold JM, Waltz JA, Prentice KJ, et al. Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull 2008; 34 : 835-47. [CrossRef] [PubMed] [Google Scholar]
  42. Culbreth A, Westbrook A, Barch D. Negative symptoms are associated with an increased subjective cost of cognitive effort. J Abnorm Psychol 2016; 125 : 528-36. [Google Scholar]
  43. Gold JM, Waltz JA, Frank MJ. Effort cost computation in schizophrenia: a commentary on the recent literature. Biol Psychiatry 2015; 78 :747-53. [CrossRef] [PubMed] [Google Scholar]
  44. Calabrese JR, Fava M, Garibaldi G, et al. Methodological approaches and magnitude of the clinical unmet need associated with amotivation in mood disorders. J Affect Disord 2014; 168 : 439-51. [CrossRef] [PubMed] [Google Scholar]
  45. Eshel N, Roiser JP. Reward and punishment processing in depression. Biol Psychiatry 2010; 68 : 118-24. [CrossRef] [PubMed] [Google Scholar]
  46. Cléry-Melin M-L, Schmidt L, Lafargue G, et al. Why don’t you try harder? An investigation of effort production in major depression. PLoS One 2011; 6 : e23178. [CrossRef] [PubMed] [Google Scholar]
  47. Mauras T, Masson M, Fossati P, Pessiglione M. Incentive sensitivity as a behavioral marker of clinical remission from major depressive episode. J Clin Psychiatry 2016; 77 : e697-703. [CrossRef] [PubMed] [Google Scholar]
  48. Hershenberg R, Satterthwaite TD, Daldal A, et al. Diminished effort on a progressive ratio task in both unipolar and bipolar depression. J Affect Disord 2016; 196 : 97-100. [CrossRef] [PubMed] [Google Scholar]
  49. Yang XH, Huang J, Zhu CY, et al. Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Res 2014; 220 : 874-82. [CrossRef] [PubMed] [Google Scholar]
  50. Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 2011; 35 : 537-55. [CrossRef] [PubMed] [Google Scholar]
  51. Favier M, Carcenac C, Marc Savasta M, Carnicella S. Motivation et apathie parkinsonienne : rôle des récepteurs dopaminergiques RD3. Med Sci (Paris) 2017; 33 : 822-4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.