Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, Numéro 3, Mars 2018
Page(s) 247 - 252
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183403013
Publié en ligne 16 mars 2018
  1. Carey MA, Card JW, Voltz JW, et al. It’s all about sex: gender, lung development and lung disease. Trends Endocrinol Metab 2007; 18 : 308-13. [CrossRef] [PubMed] [Google Scholar]
  2. Almqvist C, Worm M, Leynaert B, working group of GALENWPG. Impact of gender on asthma in childhood and adolescence: a GA2LEN review. Allergy 2008; 63 : 47-57. [PubMed] [Google Scholar]
  3. Holgate ST, Wenzel S, Postma DS, et al. Asthma. Nat Rev Dis Primers 2015; 1 : 15025. [CrossRef] [Google Scholar]
  4. Townsend EA, Miller VM, Prakash YS. Sex differences and sex steroids in lung health and disease. Endocr Rev 2012; 33 : 1-47. [CrossRef] [PubMed] [Google Scholar]
  5. Lambrecht BN, Hammad H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol 2017; 18 : 1076-83. [CrossRef] [PubMed] [Google Scholar]
  6. Markle JG, Frank DN, Mortin-Toth S, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013; 339 : 1084-8. [Google Scholar]
  7. Yurkovetskiy L, Burrows M, Khan AA, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity 2013; 39 : 400-12. [CrossRef] [PubMed] [Google Scholar]
  8. Keselman A, Heller N. Estrogen signaling modulates allergic inflammation and contributes to sex differences in asthma. Front Immunol 2015; 6 : 568. [CrossRef] [PubMed] [Google Scholar]
  9. Fuseini H, Newcomb DC. Mechanisms driving gender differences in asthma. Curr Allergy Asthma Rep 2017; 17 : 19. [CrossRef] [PubMed] [Google Scholar]
  10. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2015; 16 : 45-56. [CrossRef] [PubMed] [Google Scholar]
  11. Crinier A, Viant C, Girard-Madoux M, Vivier E. Les cellules lymphoïdes innées. Med Sci (Paris) 2017; 33 : 534-42. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010; 464 : 1367-70. [CrossRef] [PubMed] [Google Scholar]
  13. Martinez-Gonzalez I, Steer CA, Takei F. Lung ILC2s link innate and adaptive responses in allergic inflammation. Trends Immunol 2015; 36 : 189-95. [CrossRef] [PubMed] [Google Scholar]
  14. Hoyler T, Klose CS, Souabni A, et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012; 37 : 634-48. [CrossRef] [PubMed] [Google Scholar]
  15. Wong SH, Walker JA, Jolin HE, et al. Transcription factor RORalpha is critical for nuocyte development. Nat Immunol 2012; 13 : 229-36. [CrossRef] [PubMed] [Google Scholar]
  16. Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28 : 29-39. [CrossRef] [PubMed] [Google Scholar]
  17. Halim TY, Steer CA, Matha L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 2014; 40 : 425-35. [CrossRef] [PubMed] [Google Scholar]
  18. Doherty TA, Khorram N, Lund S, et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 2013; 132 : 205-13. [CrossRef] [PubMed] [Google Scholar]
  19. Xue L, Salimi M, Panse I, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol 2014; 133 : 1184-94. [CrossRef] [PubMed] [Google Scholar]
  20. Wojno ED, Monticelli LA, Tran SV, et al. The prostaglandin D(2) receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol 2015; 8 : 1313-23. [Google Scholar]
  21. von Moltke J, O’Leary CE, Barrett NA, et al. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. J Exp Med 2017; 214 : 27-37. [CrossRef] [PubMed] [Google Scholar]
  22. Barnig C, Cernadas M, Dutile S, et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci TranslMed 2013; 5 : 174ra26. [Google Scholar]
  23. Gold MJ, Antignano F, Halim TY, et al. Group 2 innate lymphoid cells facilitate sensitization to local, butnot systemic, TH2-inducing allergen exposures. J Allergy Clin Immunol 2014; 133 : 1142-8. [CrossRef] [PubMed] [Google Scholar]
  24. Nicolai T, Pereszlenyiova-Bliznakova L, Illi S, et al. Longitudinal follow-up of the changing gender ratio in asthma from childhood to adulthood: role of delayed manifestation in girls. Pediatr Allergy Immunol 2003; 14 : 280-3. [CrossRef] [PubMed] [Google Scholar]
  25. Arshad SH, Raza A, Lau L, et al. Pathophysiological characterization of asthma transitions across adolescence. Respir Res 2014; 15 : 153. [CrossRef] [PubMed] [Google Scholar]
  26. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016; 16 : 626-38. [CrossRef] [PubMed] [Google Scholar]
  27. Kissick HT, Sanda MG, Dunn LK, et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc Nat! Acad Sci USA 2014; 111 : 9887-92. [CrossRef] [Google Scholar]
  28. Melgert BN, Postma DS, Kuipers I, et al. Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clin Exp Allergy 2005; 35 : 1496-503. [CrossRef] [PubMed] [Google Scholar]
  29. Blacquiere MJ, Hylkema MN, Postma DS, et al. Airway inflammation and remodeling in two mouse models of asthma: comparison of males and females. Int Arch Allergy Immunol 2010; 153 : 173-81. [CrossRef] [PubMed] [Google Scholar]
  30. Takeda M, Tanabe M, Ito W, et al. Gender difference in allergic airway remodelling and immunoglobulin production in mouse model of asthma. Respirology 2013; 18 : 797-806. [CrossRef] [PubMed] [Google Scholar]
  31. Hayashi T, Adachi Y, Hasegawa K, Morimoto M. Less sensitivity for late airway inflammation in males than females in BALB/c mice. Scand J Immunol 2003; 57 : 562-7. [CrossRef] [PubMed] [Google Scholar]
  32. Liou CJ, Huang WC. Dehydroepiandrosterone suppresses eosinophil infiltration and airway hyperresponsiveness via modulation of chemokines and Th2 cytokines in ovalbumin-sensitized mice. J Clin Immunol 2011; 31 : 656-65. [CrossRef] [PubMed] [Google Scholar]
  33. Riffo-Vasquez Y, Ligeiro de Oliveira AP, Page CP, et al. Role of sex hormones in allergic inflammation in mice. Clin Exp Allergy 2007; 37 : 459-70. [CrossRef] [PubMed] [Google Scholar]
  34. Couse JF, Lindzey J, Grandien K, et al. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 1997; 138 : 4613-21. [CrossRef] [PubMed] [Google Scholar]
  35. Carey MA, Card JW, Bradbury JA, et al. Spontaneous airway hyperresponsiveness in estrogen receptor-alpha-deficient mice. Am J Respir Crit Care Med 2007; 175 : 126-35. [CrossRef] [PubMed] [Google Scholar]
  36. Dimitropoulou C, Drakopanagiotakis F, Chatterjee A, et al. Estrogen replacement therapy prevents airway dysfunction in a murine model of allergen-induced asthma. Lung 2009; 187 : 116-27. [CrossRef] [PubMed] [Google Scholar]
  37. Laffont S, Garnier L, Lelu K, Guery JC. Estrogen-mediated protection of experimental autoimmune encephalomyelitis: Lessons from the dissection of estrogen receptor-signaling in vivo. BiomedJ 2015; 38 : 194-205. [CrossRef] [Google Scholar]
  38. Laffont S, Seillet C, Guery JC. Estrogen receptor-dependent regulation of dendritic cell development and function. Front Immunol 2017; 8 : 108. [PubMed] [Google Scholar]
  39. Melgert BN, Oriss TB, Qi Z, et al. Macrophages: regulators of sex differences in asthma? Am J Respir Cell Mol Biol 2010; 42 : 595-603. [CrossRef] [Google Scholar]
  40. Warren KJ, Sweeter JM, Pavlik JA, et al. Sex differences in activation of lung-related type 2 innate lymphoid cells in experimental asthma. Ann Allergy Asthma Immunol 2017; 118 : 233-34. [CrossRef] [PubMed] [Google Scholar]
  41. Laffont S, Blanquart E, Savignac M, et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J Exp Med 2017; 214 : 1581-92. [CrossRef] [PubMed] [Google Scholar]
  42. Cephus J-Y, Stier MT, Fuseini H, et al. Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep 2017; 21 : 2487-99. [CrossRef] [PubMed] [Google Scholar]
  43. Robinette ML, Fuchs A, Cortez VS, et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol 2015; 16 : 306-17. [CrossRef] [PubMed] [Google Scholar]
  44. Vivier E, van de Pavert SA, Cooper MD, Belz GT. The evolution of innate lymphoid cells. Nat Immunol 2016; 17 : 790-4. [CrossRef] [PubMed] [Google Scholar]
  45. Gasteiger G, Fan X, Dikiy S, et al. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 2015; 350 : 981-5. [Google Scholar]
  46. Warren KJ, Sweeter JM, Pavlik JA, et al. Sex differences in activation of lung-related type 2 innate lymphoid cells in experimental asthma. Ann Allergy Asthma Immunol 2017; 118 : 233-4. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.