Free Access
Issue
Med Sci (Paris)
Volume 34, Number 3, Mars 2018
Page(s) 231 - 237
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183403011
Published online 16 March 2018
  1. Jenkins MK, Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 1987; 165 : 302-19. [CrossRef] [PubMed] [Google Scholar]
  2. Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006; 355 : 1018-28. [Google Scholar]
  3. Badoual C, Combe P, Gey A, et al. Signification et intérêt clinique de l’expression de PD-1 et PDL-1 dans les tumeurs. Med Sci (Paris) 2013; 29 : 570-2. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Bettini M, Szymczak-Workman AL, Forbes K, et al. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J Immunol 2011; 187 : 3493-8. [CrossRef] [PubMed] [Google Scholar]
  5. Joller N, Hafler JP, Brynedal B, et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 2011; 186 : 1338-42. [CrossRef] [PubMed] [Google Scholar]
  6. Wherry EJ. T cell exhaustion. Nat immunol 2011; 12 : 492-9. [CrossRef] [PubMed] [Google Scholar]
  7. Apetoh L, Smyth MJ, Drake CG, et al. Consensus nomenclature for CD8+ T cell phenotypes in cancer. Oncoimmunology 2015; 4 : e998538. [CrossRef] [PubMed] [Google Scholar]
  8. Kim HJ, Barnitz RA, Kreslavsky T, et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science 2015; 350 : 334-9. [Google Scholar]
  9. Singer M, Wang C, Cong L, et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T Cells. Cell 2016; 166 : 1500-11 e9. [Google Scholar]
  10. Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016; 352 : 189-96. [Google Scholar]
  11. Monney L, Sabatos CA, Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002; 415 : 536-41. [CrossRef] [PubMed] [Google Scholar]
  12. Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat immunol 2005; 6 : 1245-52. [CrossRef] [PubMed] [Google Scholar]
  13. Oomizu S, Arikawa T, Niki T, et al. Galectin-9 suppresses Th17 cell development in an IL-2-dependent but Tim-3-independent manner. Clin immunol 2012; 143 : 51-8. [CrossRef] [PubMed] [Google Scholar]
  14. Granier C, Dariane C, Combe P, et al. Tim-3 Expression on tumor-infiltrating PD-1+CD8+ T cells correlates with poor clinical outcome in renal cell carcinoma. Cancer Res 2017; 77 : 1075-82. [Google Scholar]
  15. Nakayama M, Akiba H, Takeda K, et al. Tim-3 mediates phagocytosis of apoptotic cells and crosspresentation. Blood 2009; 113 : 3821-30. [Google Scholar]
  16. Huang YH, Zhu C, Kondo Y, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 2015; 517 : 386-90. [CrossRef] [PubMed] [Google Scholar]
  17. Rangachari M, Zhu C, Sakuishi K, et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 2012; 18 : 1394-400. [CrossRef] [PubMed] [Google Scholar]
  18. Huang RY, Eppolito C, Lele S, et al. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget 2015; 6 : 27359-77. [CrossRef] [PubMed] [Google Scholar]
  19. Zhu C, Sakuishi K, Xiao S, et al. An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction. Nat commun 2015; 6 : 6072. [CrossRef] [PubMed] [Google Scholar]
  20. Dannenmann SR, Thielicke J, Stockli M, et al. Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma. Oncoimmunology 2013; 2 : e23562. [CrossRef] [PubMed] [Google Scholar]
  21. Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat immunol 2012; 13 : 832-42. [Google Scholar]
  22. Sakuishi K, Ngiow SF, Sullivan JM, et al. TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncoimmunology 2013; 2 : e23849. [CrossRef] [PubMed] [Google Scholar]
  23. Moorman JP, Wang JM, Zhang Y, et al. Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection. J Immunol 2012; 189 : 755-66. [CrossRef] [PubMed] [Google Scholar]
  24. Kurtulus S, Sakuishi K, Ngiow SF, et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 2015; 125 : 4053-62. [CrossRef] [PubMed] [Google Scholar]
  25. Gleason MK, Lenvik TR, McCullar V, et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 2012; 119 : 3064-72. [Google Scholar]
  26. Ndhlovu LC, Lopez-Verges S, Barbour JD, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 2012; 119 : 3734-43. [Google Scholar]
  27. da Silva IP, Gallois A, Jimenez-Baranda S, et al. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res 2014; 2 : 410-22. [CrossRef] [PubMed] [Google Scholar]
  28. Xu L, Huang Y, Tan L, et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int immunopharmacol 2015; 29 : 635-41. [Google Scholar]
  29. Yang X, Jiang X, Chen G, et al. T cell Ig mucin-3 promotes homeostasis of sepsis by negatively regulating the TLR response. J Immunol 2013; 190 : 2068-79. [CrossRef] [PubMed] [Google Scholar]
  30. Giraldo NA, Becht E, Pages F, et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res 2015; 21 : 3031-40. [CrossRef] [PubMed] [Google Scholar]
  31. Badoual C, Hans S, Merillon N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 2013; 73 : 128-38. [Google Scholar]
  32. Thommen DS, Schreiner J, Muller P, et al. Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol Res 2015; 3 : 1344-55. [CrossRef] [PubMed] [Google Scholar]
  33. Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010; 207 : 2175-86. [CrossRef] [PubMed] [Google Scholar]
  34. Gros A, Robbins PF, Yao X, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014; 124 : 2246-59. [CrossRef] [PubMed] [Google Scholar]
  35. Djenidi F, Adam J, Goubar A, et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J Immunol 2015; 194 : 3475-86. [CrossRef] [PubMed] [Google Scholar]
  36. Nizard M, Roussel H, Diniz MO, et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat commun 2017; 8 : 15221. [CrossRef] [PubMed] [Google Scholar]
  37. Sandoval F, Terme M, Nizard M, et al. Mucosal imprinting of vaccine-induced CD8+ T cells is crucial to inhibit the growth of mucosal tumors. Sci Transl Med 2013; 5 : 172ra20. [Google Scholar]
  38. Li H, Wu K, Tao K, et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virusassociated hepatocellular carcinoma. Hepatology 2012; 56 : 1342-51. [CrossRef] [PubMed] [Google Scholar]
  39. Ngiow SF, von Scheidt B, Akiba H, et al. Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res 2011; 71 : 3540-51. [Google Scholar]
  40. Chauvin JM, Pagliano O, Fourcade J, et al. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest 2015; 125 : 2046-58. [CrossRef] [PubMed] [Google Scholar]
  41. Giraldo NA, Becht E, Vano Y, et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin Cancer Res 2017; 23 : 4416-28. [CrossRef] [PubMed] [Google Scholar]
  42. Yang ZZ, Grote DM, Ziesmer SC, et al. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest 2012; 122 : 1271-82. [CrossRef] [PubMed] [Google Scholar]
  43. Gao X, Yang J, He Y, Zhang J. Quantitative assessment of TIM-3 polymorphisms and cancer risk in Chinese Han population. Oncotarget 2016; 7 : 35768-75. [PubMed] [Google Scholar]
  44. Paley MA, Kroy DC, Odorizzi PM, et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 2012; 338 : 1220-5. [Google Scholar]
  45. Kamphorst AO, Wieland A, Nasti T, et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 2017; 355 : 1423-7. [Google Scholar]
  46. Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016; 7 : 10501. [CrossRef] [PubMed] [Google Scholar]
  47. Shayan G, Srivastava R, Li J, et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology 2016; 6 : e1261779. [Google Scholar]
  48. Odorizzi PM, Pauken KE, Paley MA, et al. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med 2015; 212 : 1125-37. [CrossRef] [PubMed] [Google Scholar]
  49. Zhou Q, Munger ME, Veenstra RG, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 2011; 117 : 4501-10. [Google Scholar]
  50. Pignon J-C, Jegede O, Mahoney KM, et al. Impact of immune checkpoint protein expression in tumor cells and tumor infiltrating CD8+ T cells on clinical benefit from PD-1 blockade in metastatic clear cell renal cell carcinoma (mccRCC). J Clin Oncol 2017; 35 : 477. [Google Scholar]
  51. Torras OR, Marin-Aguilera M, Jiménez N, et al. Molecular profile of sunitinib resistance in clear-cell renal cell carcinoma. Cancer Res 2017; 77 (suppl 13) : abstract 785. [Google Scholar]
  52. Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010; 207 : 2187-94. [CrossRef] [PubMed] [Google Scholar]
  53. Kim JE, Patel MA, Mangraviti A, et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res 2016; 23 : 124-36. [CrossRef] [PubMed] [Google Scholar]
  54. Takamura S, Tsuji-Kawahara S, Yagita H, et al. Premature terminal exhaustion of Friend virus-specific effector CD8+ T cells by rapid induction of multiple inhibitory receptors. J Immunol 2010; 184 : 4696-707. [CrossRef] [PubMed] [Google Scholar]
  55. Gefen T, Castro I, Muharemagic D, et al. A TIM-3 oligonucleotide aptamer enhances T cell functions and potentiates tumor immunity in mice. Mol Ther 2017; 25 : 2280-8. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.