Free Access
Issue
Med Sci (Paris)
Volume 34, Number 3, Mars 2018
Page(s) 223 - 230
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183403010
Published online 16 March 2018
  1. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37 : 614-36. [CrossRef] [PubMed] [Google Scholar]
  2. Brondello JM, Prieur A, Philipot D, et al. La sénescence cellulaire : un nouveau mythe de Janus? Med Sci (Paris) 2012; 28 : 288-96. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Pluquet O, Pourtier A, Abbadie C. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am J Physiol Cell Physiol 2014; 308 : C415-25. [CrossRef] [PubMed] [Google Scholar]
  4. Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to precarcinogenic stresses? Cell Mol Life Sci 2017; 74 : 4471-509. [CrossRef] [PubMed] [Google Scholar]
  5. Yang Q. Cellular senescence, telomere recombination and maintenance. Cytogenet Genome Res 2008; 122 : 211-8. [CrossRef] [PubMed] [Google Scholar]
  6. Vurusaner B, Poli G, Basaga H. Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 2012; 52 : 7-18. [CrossRef] [PubMed] [Google Scholar]
  7. Nassour J, Martien S, Martin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun 2016; 7 : 10399. [CrossRef] [PubMed] [Google Scholar]
  8. Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 2005; 37 : 961-76. [CrossRef] [PubMed] [Google Scholar]
  9. Narita M, Nunez S, Heard E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113 : 703-16. [CrossRef] [PubMed] [Google Scholar]
  10. Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 2015; 21 : 1424-35. [CrossRef] [PubMed] [Google Scholar]
  11. He S, Sharpless NE. Senescence in Health and Disease. Cell 2017; 169 : 1000-11. [CrossRef] [PubMed] [Google Scholar]
  12. Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016; 530 : 184-9. [CrossRef] [PubMed] [Google Scholar]
  13. Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS. BRAF(E600) in benign and malignant human tumours. Oncogene 2008; 27 : 877-95. [Google Scholar]
  14. Zacarias-Fluck MF, Morancho B, Vicario R, et al. Effect of cellular senescence on the growth of HER2-positive breast cancers. J Natl Cancer Inst 2015; 105-7. [Google Scholar]
  15. Ouellette MM, Wright WE, Shay JW. Targeting telomerase-expressing cancer cells. J Cell Mol Med 2011; 15 : 1433-42. [CrossRef] [PubMed] [Google Scholar]
  16. Rossiello F, Herbig U, Longhese MP, et al. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev 2014; 26 : 89-95. [CrossRef] [PubMed] [Google Scholar]
  17. Krishnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest 2004; 114 : 1299-307. [CrossRef] [PubMed] [Google Scholar]
  18. Gosselin K, Martien S, Pourtier A, et al. Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res 2009; 69 : 7917-25. [Google Scholar]
  19. Martin N, Salazar-Cardozo C, Vercamer C, et al. Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes. Mol Cancer 2014; 13 : 151. [CrossRef] [PubMed] [Google Scholar]
  20. Malaquin N, Vercamer C, Bouali F, et al. Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One 2013; 8 : e63607. [CrossRef] [PubMed] [Google Scholar]
  21. Romanov SR, Kozakiewicz BK, Holst CR, et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 2001; 409 : 633-7. [CrossRef] [PubMed] [Google Scholar]
  22. Deruy E, Nassour J, Martin N, et al. Level of macroautophagy drives senescent keratinocytes into cell death or neoplastic evasion. Cell Death Dis 2014; 5 : e1577. [CrossRef] [PubMed] [Google Scholar]
  23. De Carne Trecesson S, Guillemin Y, Belanger A, et al. Escape from p21-mediated oncogene-induced senescence leads to cell dedifferentiation and dependence on anti-apoptotic Bcl-xL and MCL1 proteins. J Biol Chem 2011; 286 : 12825-38. [CrossRef] [PubMed] [Google Scholar]
  24. Feijoo P, Terradas M, Soler D, et al. Breast primary epithelial cells that escape p16-dependent stasis enter a telomere-driven crisis state. Breast Cancer Res 2016; 18 : 7. [CrossRef] [PubMed] [Google Scholar]
  25. Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436 : 720-4. [CrossRef] [PubMed] [Google Scholar]
  26. Choi J, Shendrik I, Peacocke M, et al. Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia. Urology 2000; 56 : 160-6. [Google Scholar]
  27. Di Micco R, Fumagalli M, Cicalese A, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444 : 638-42. [CrossRef] [PubMed] [Google Scholar]
  28. Malaquin N, Martinez A, Rodier F. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 2016; 82 : 39-49. [CrossRef] [PubMed] [Google Scholar]
  29. Mavrogonatou E, Pratsinis H, Papadopoulou A, et al. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis. Matrix Biol 2017. Oct 21. pii: S0945-053X(17)30296-2. doi: 10.1016/j. matbio.2017.10.004. [Google Scholar]
  30. Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 2009; 9 : 81-94. [CrossRef] [PubMed] [Google Scholar]
  31. Ruhland MK, Loza AJ, Capietto AH, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun 2016; 7 : 11762. [CrossRef] [PubMed] [Google Scholar]
  32. Toso A, Di Mitri D, Alimonti A. Enhancing chemotherapy efficacy by reprogramming the senescence-associated secretory phenotype of prostate tumors: a way to reactivate the antitumor immunity. Oncoimmunology 2015; 4 : e994380. [CrossRef] [PubMed] [Google Scholar]
  33. Ewald JA, Desotelle JA, Wilding G, Jarrard DF. Therapy-induced senescence in cancer. J Natl Cancer Inst 2010; 102 : 1536-46. [CrossRef] [PubMed] [Google Scholar]
  34. Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine 2017; 21 : 21-8. [CrossRef] [PubMed] [Google Scholar]
  35. Mosieniak G, Sliwinska MA, Alster O, et al. Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence. Neoplasia 2015; 17 : 882-93. [Google Scholar]
  36. Wang Q, Wu PC, Dong DZ, et al. Polyploidy road to therapy-induced cellular senescence and escape. Int J Cancer 2013; 132 : 1505-15. [CrossRef] [PubMed] [Google Scholar]
  37. Jonchere B, Vetillard A, Toutain B, et al. Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Oncotarget 2015; 6 : 409-26. [CrossRef] [PubMed] [Google Scholar]
  38. Achuthan S, Santhoshkumar TR, Prabhakar J, et al. Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J Biol Chem 2011; 286 : 37813-29. [CrossRef] [PubMed] [Google Scholar]
  39. Simova J, Sapega O, Imrichova T, et al. Tumor growth accelerated by chemotherapy-induced senescent cells is suppressed by treatment with IL-12 producing cellular vaccines. Oncotarget 2016; 7 : 54952-64. [CrossRef] [PubMed] [Google Scholar]
  40. Tato-Costa J, Casimiro S, Pacheco T, et al. Therapy-induced cellular senescence induces epithelial-to-mesenchymal transition and increases invasiveness in rectal cancer. Clin Colorectal Cancer 2016; 15 : 170-8-e3. [CrossRef] [PubMed] [Google Scholar]
  41. Londono-Vallejo A, Lenain C, Gilson E. Cibler les télomères pour forcer les cellules cancéreuses à rentrer en sénescence. Med Sci (Paris) 2008; 24 : 383-9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Bilsland AE, Cairney CJ, Keith WN. Targeting the telomere and shelterin complex for cancer therapy: current views and future perspectives. J Cell Mol Med 2011; 15 : 179-86. [CrossRef] [PubMed] [Google Scholar]
  43. Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 2015; 14 : 644-58. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.