Free Access
Issue
Med Sci (Paris)
Volume 34, Number 2, Février 2018
Page(s) 161 - 165
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183402014
Published online 16 February 2018
  1. Metzker ML. Sequencing technologies: the next generation. Nat Rev Genet 2010; 11 : 31-46. [Google Scholar]
  2. Levy SE, Myers RM. Advancements in next-generation sequencing. Annu Rev Genomics Hum Genet 2016; 17 : 95-115. [CrossRef] [Google Scholar]
  3. Nakano K, Shiroma A, Shimoji M, et al. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Hum Cell 2017; 30 : 149-61. [Google Scholar]
  4. Merriman B, Torrent I, Rothberg JM. Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis 2012; 33 : 3397-417. [Google Scholar]
  5. Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011; 475 : 348-52. [Google Scholar]
  6. Kasianowicz JJ, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 1996; 93 : 13770-3. [CrossRef] [PubMed] [Google Scholar]
  7. Robertson JWF, Rodrigues CG, Stanford VM, et al. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc Natl Acad Sci USA 2007; 104 : 8207-11. [CrossRef] [Google Scholar]
  8. Oukhaled G, Mathé J, Biance A-L, et al. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys Rev Lett 2007; 98 : 158101. [Google Scholar]
  9. Oukhaled A, Cressiot B, Bacri L, et al. Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 2011; 5 : 3628-38. [Google Scholar]
  10. Mathé J, Visram H, Viasnoff V, et al. Nanopore unzipping of individual DNA hairpin molecules. Biophys J 2004; 87 : 3205-12. [Google Scholar]
  11. Plesa C, Verschueren D, Pud S, et al. Direct observation of DNA knots using a solid-state nanopore. Nat Nanotechnol 2016; 11 : 1093-7. [Google Scholar]
  12. Kowalczyk SW, Hall AR, Dekker C. Detection of local protein structures along DNA using solidstate nanopores. Nano Lett 2010; 10 : 324-8. [Google Scholar]
  13. Jain M, Koren S, Quick J, et al. Nanopore sequencing and assembly of a human genome with ultralong reads. 2017. bioRxiv 128835; doi : https : //doi.org/10.1101/128835. [Google Scholar]
  14. Goodwin S, Gurtowski J, Ethe-Sayers S, et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 2015; 25 : 1750-6. [Google Scholar]
  15. Jain M, Fiddes IT, Miga KH, et al. Improved data analysis for the MinION nanopore sequencer. Nat Methods 2015; 12 : 351-6. [Google Scholar]
  16. Loman NJ, Quinlan AR. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics 2014; 30 : 3399-401. [Google Scholar]
  17. Jain M, Olsen HE, Paten B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 2016; 17 : 239. [Google Scholar]
  18. Jain M, Tyson JR, Loose M, et al. MinION analysis and reference consortium: Phase 2 data release and analysis of R9.0 chemistry. F1000Research 2017; 6 : 760. [Google Scholar]
  19. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015; 12 : 733-5. [Google Scholar]
  20. Ludden C, Reuter S, Judge K, et al. Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing. Microb Genom 2017; 3 : e000114. [Google Scholar]
  21. Schmidt K, Mwaigwisya S, Crossman LC, et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J Antimicrob Chemother 2017; 72 : 104-14. [CrossRef] [PubMed] [Google Scholar]
  22. Yamagishi J, Runtuwene LR, Hayashida K, et al. Serotyping dengue virus with isothermal amplification and a portable sequencer. Sci Rep 2017; 7 : 3510. [Google Scholar]
  23. Batovska J, Lynch SE, Rodoni BC, et al. Metagenomic arbovirus detection using MinION nanopore sequencing. J Virol Methods 2017; 249 : 79-84. [Google Scholar]
  24. Quick J, Loman NJ, Duraffour S, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016; 530 : 228-32. [Google Scholar]
  25. Debladis E, Llauro C, Carpentier MC, et al. Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology. BMC Genomics 2017; 18 : 537. [Google Scholar]
  26. Simpson JT, Workman RE, Zuzarte PC, et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 2017; 14 : 407-10. [Google Scholar]
  27. Roeck A De, Bossche T Van den, Zee J van der, et al. Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer’s disease. Acta Neuropathol 2017; 134 : 475-87. [Google Scholar]
  28. Byrne A, Beaudin AE, Olsen HE, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 2017; 8 : 16027. [Google Scholar]
  29. Norris AL, Workman RE, Fan Y, et al. Nanopore sequencing detects structural variants in cancer. Cancer Biol Ther 2016; 17 : 246-53. [Google Scholar]
  30. Minervini CF, Cumbo C, Orsini P, et al. Mutational analysis in BCR - ABL1 positive leukemia by deep sequencing based on nanopore MinION technology. Exp Mol Pathol 2017; 103 : 33-7. [Google Scholar]
  31. Cheng SH, Jiang P, Sun K, et al. Noninvasive prenatal testing by nanopore sequencing of maternal plasma DNA: feasibility assessment. Clin Chem 2015; 61 : 1305-6. [Google Scholar]
  32. Goodwin S, Wappel R, McCombie WR. 1D genome sequencing on the Oxford nanopore MinION. Curr Protoc Hum Genet 2017; 94 : 18.11.1-18.11.14. [Google Scholar]
  33. Judge K, Harris SR, Reuter S, et al. Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes. J Antimicrob Chemother 2015; 70 : 2775-8. [CrossRef] [PubMed] [Google Scholar]
  34. Laver T, Harrison J, O’Neill PA, et al. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 2015; 3 : 1-8. [Google Scholar]
  35. Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat Nanotechnol. 2014; 9 : 466-73. [Google Scholar]
  36. Wanunu M. Nanopores: a journey towards DNA sequencing. Phys Life Rev 2012; 9 : 125-58. [Google Scholar]
  37. Feng J, Liu K, Bulushev RD, et al. Identification of single nucleotides in MoS2 nanopores. Nat Nanotechnol 2015; 10 : 1070-6. [Google Scholar]
  38. Heerema SJ, Dekker C. Graphene nanodevices for DNA sequencing. Nat Nanotechnol 2016; 11 : 127-36. [Google Scholar]
  39. Schneider GF, Kowalczyk SW, Calado VE, et al. DNA translocation through graphene nanopores. Nano Lett 2010; 10 : 3163-7. [Google Scholar]
  40. Merchant CA, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores. Nano Lett 2010; 10 : 2915-21. [Google Scholar]
  41. Hemamouche A, Morin A, Bourhis E, et al. FIB patterning of dielectric, metallized and graphene membranes: A comparative study. Microelectron Eng 2014; 121 : 87-91. [Google Scholar]
  42. Yusko EC, Johnson JM, Majd S, et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat Nanotechnol 2011; 6 : 253-60. [Google Scholar]
  43. McNally B, Singer A, Yu Z, et al. Optical recognition of converted DNA nucleotides for single-molecule dna sequencing using nanopore arrays. Nano Lett 2010; 10 : 2237-44. [Google Scholar]
  44. Levene MJ, Korlach J, Turner SW, et al. zero-mode waveguides for singlrmolecule analysis at high concentrations. Science 2003; 299 : 682-6. [Google Scholar]
  45. Gilboa T, Meller A. Optical sensing and analyte manipulation in solid-state nanopores. Analyst 2015; 140 : 4733-47. [Google Scholar]
  46. Rosenstein JK, Wanunu M, Merchant CA, et al. Integrated nanopore sensing platform with sub-microsecond temporal resolution. 2012; 9 : 487-92. [Google Scholar]
  47. Auger T, Mathé J, Viasnoff V, et al. Zero-mode waveguide detection of flowdriven DNA translocation through nanopores. Phys Rev Lett 2014; 113 : 28302. [Google Scholar]
  48. Jordan B. Séquençage d’ADN : l’offensive des nanopores. Med Sci (Paris) 2017; 33 : 801-4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.