Accès gratuit
Numéro |
Med Sci (Paris)
Volume 34, Numéro 2, Février 2018
|
|
---|---|---|
Page(s) | 161 - 165 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20183402014 | |
Publié en ligne | 16 février 2018 |
- Metzker ML. Sequencing technologies: the next generation. Nat Rev Genet 2010; 11 : 31-46. [Google Scholar]
- Levy SE, Myers RM. Advancements in next-generation sequencing. Annu Rev Genomics Hum Genet 2016; 17 : 95-115. [CrossRef] [Google Scholar]
- Nakano K, Shiroma A, Shimoji M, et al. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Hum Cell 2017; 30 : 149-61. [Google Scholar]
- Merriman B, Torrent I, Rothberg JM. Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis 2012; 33 : 3397-417. [Google Scholar]
- Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011; 475 : 348-52. [Google Scholar]
- Kasianowicz JJ, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 1996; 93 : 13770-3. [CrossRef] [PubMed] [Google Scholar]
- Robertson JWF, Rodrigues CG, Stanford VM, et al. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc Natl Acad Sci USA 2007; 104 : 8207-11. [CrossRef] [Google Scholar]
- Oukhaled G, Mathé J, Biance A-L, et al. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys Rev Lett 2007; 98 : 158101. [Google Scholar]
- Oukhaled A, Cressiot B, Bacri L, et al. Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 2011; 5 : 3628-38. [Google Scholar]
- Mathé J, Visram H, Viasnoff V, et al. Nanopore unzipping of individual DNA hairpin molecules. Biophys J 2004; 87 : 3205-12. [Google Scholar]
- Plesa C, Verschueren D, Pud S, et al. Direct observation of DNA knots using a solid-state nanopore. Nat Nanotechnol 2016; 11 : 1093-7. [Google Scholar]
- Kowalczyk SW, Hall AR, Dekker C. Detection of local protein structures along DNA using solidstate nanopores. Nano Lett 2010; 10 : 324-8. [Google Scholar]
- Jain M, Koren S, Quick J, et al. Nanopore sequencing and assembly of a human genome with ultralong reads. 2017. bioRxiv 128835; doi : https : //doi.org/10.1101/128835. [Google Scholar]
- Goodwin S, Gurtowski J, Ethe-Sayers S, et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 2015; 25 : 1750-6. [Google Scholar]
- Jain M, Fiddes IT, Miga KH, et al. Improved data analysis for the MinION nanopore sequencer. Nat Methods 2015; 12 : 351-6. [Google Scholar]
- Loman NJ, Quinlan AR. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics 2014; 30 : 3399-401. [Google Scholar]
- Jain M, Olsen HE, Paten B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 2016; 17 : 239. [Google Scholar]
- Jain M, Tyson JR, Loose M, et al. MinION analysis and reference consortium: Phase 2 data release and analysis of R9.0 chemistry. F1000Research 2017; 6 : 760. [Google Scholar]
- Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015; 12 : 733-5. [Google Scholar]
- Ludden C, Reuter S, Judge K, et al. Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing. Microb Genom 2017; 3 : e000114. [Google Scholar]
- Schmidt K, Mwaigwisya S, Crossman LC, et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J Antimicrob Chemother 2017; 72 : 104-14. [CrossRef] [PubMed] [Google Scholar]
- Yamagishi J, Runtuwene LR, Hayashida K, et al. Serotyping dengue virus with isothermal amplification and a portable sequencer. Sci Rep 2017; 7 : 3510. [Google Scholar]
- Batovska J, Lynch SE, Rodoni BC, et al. Metagenomic arbovirus detection using MinION nanopore sequencing. J Virol Methods 2017; 249 : 79-84. [Google Scholar]
- Quick J, Loman NJ, Duraffour S, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016; 530 : 228-32. [Google Scholar]
- Debladis E, Llauro C, Carpentier MC, et al. Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology. BMC Genomics 2017; 18 : 537. [Google Scholar]
- Simpson JT, Workman RE, Zuzarte PC, et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 2017; 14 : 407-10. [Google Scholar]
- Roeck A De, Bossche T Van den, Zee J van der, et al. Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer’s disease. Acta Neuropathol 2017; 134 : 475-87. [Google Scholar]
- Byrne A, Beaudin AE, Olsen HE, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 2017; 8 : 16027. [Google Scholar]
- Norris AL, Workman RE, Fan Y, et al. Nanopore sequencing detects structural variants in cancer. Cancer Biol Ther 2016; 17 : 246-53. [Google Scholar]
- Minervini CF, Cumbo C, Orsini P, et al. Mutational analysis in BCR - ABL1 positive leukemia by deep sequencing based on nanopore MinION technology. Exp Mol Pathol 2017; 103 : 33-7. [Google Scholar]
- Cheng SH, Jiang P, Sun K, et al. Noninvasive prenatal testing by nanopore sequencing of maternal plasma DNA: feasibility assessment. Clin Chem 2015; 61 : 1305-6. [Google Scholar]
- Goodwin S, Wappel R, McCombie WR. 1D genome sequencing on the Oxford nanopore MinION. Curr Protoc Hum Genet 2017; 94 : 18.11.1-18.11.14. [Google Scholar]
- Judge K, Harris SR, Reuter S, et al. Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes. J Antimicrob Chemother 2015; 70 : 2775-8. [CrossRef] [PubMed] [Google Scholar]
- Laver T, Harrison J, O’Neill PA, et al. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 2015; 3 : 1-8. [Google Scholar]
- Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat Nanotechnol. 2014; 9 : 466-73. [Google Scholar]
- Wanunu M. Nanopores: a journey towards DNA sequencing. Phys Life Rev 2012; 9 : 125-58. [Google Scholar]
- Feng J, Liu K, Bulushev RD, et al. Identification of single nucleotides in MoS2 nanopores. Nat Nanotechnol 2015; 10 : 1070-6. [Google Scholar]
- Heerema SJ, Dekker C. Graphene nanodevices for DNA sequencing. Nat Nanotechnol 2016; 11 : 127-36. [Google Scholar]
- Schneider GF, Kowalczyk SW, Calado VE, et al. DNA translocation through graphene nanopores. Nano Lett 2010; 10 : 3163-7. [Google Scholar]
- Merchant CA, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores. Nano Lett 2010; 10 : 2915-21. [Google Scholar]
- Hemamouche A, Morin A, Bourhis E, et al. FIB patterning of dielectric, metallized and graphene membranes: A comparative study. Microelectron Eng 2014; 121 : 87-91. [Google Scholar]
- Yusko EC, Johnson JM, Majd S, et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat Nanotechnol 2011; 6 : 253-60. [Google Scholar]
- McNally B, Singer A, Yu Z, et al. Optical recognition of converted DNA nucleotides for single-molecule dna sequencing using nanopore arrays. Nano Lett 2010; 10 : 2237-44. [Google Scholar]
- Levene MJ, Korlach J, Turner SW, et al. zero-mode waveguides for singlrmolecule analysis at high concentrations. Science 2003; 299 : 682-6. [Google Scholar]
- Gilboa T, Meller A. Optical sensing and analyte manipulation in solid-state nanopores. Analyst 2015; 140 : 4733-47. [Google Scholar]
- Rosenstein JK, Wanunu M, Merchant CA, et al. Integrated nanopore sensing platform with sub-microsecond temporal resolution. 2012; 9 : 487-92. [Google Scholar]
- Auger T, Mathé J, Viasnoff V, et al. Zero-mode waveguide detection of flowdriven DNA translocation through nanopores. Phys Rev Lett 2014; 113 : 28302. [Google Scholar]
- Jordan B. Séquençage d’ADN : l’offensive des nanopores. Med Sci (Paris) 2017; 33 : 801-4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.