Free Access
Issue
Med Sci (Paris)
Volume 32, Novembre 2016
Les cahiers de myologie
Page(s) 40 - 45
Section Mise au point
DOI https://doi.org/10.1051/medsci/201632s210
Published online 21 November 2016
  1. Godfrey C, Foley AR, Clement E, et al. Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 2011 ; 21 : 278–285. [CrossRef] [PubMed] [Google Scholar]
  2. Devisme L, Bouchet C, Gonzales M, et al. Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 2012 ; 135 : 469–482. [CrossRef] [PubMed] [Google Scholar]
  3. Stalnaker SH, Aoki K, Lim JM, et al. Glycomic analyses of mouse models of congenital muscular dystrophy. J Biol Chem 2011 ; 286 : 21180–21190. [CrossRef] [PubMed] [Google Scholar]
  4. Henry MD, Campbell KP. Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. Curr Opin Cell Biol 1996 ; 8 : 625–631. [CrossRef] [PubMed] [Google Scholar]
  5. Barresi R, Campbell KP. Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 2006 ; 119 : 199–207. [CrossRef] [PubMed] [Google Scholar]
  6. Michele DE, Barresi R, Kanagawa M, et al. Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 2002 ; 418 : 417–422. [CrossRef] [PubMed] [Google Scholar]
  7. Yoshida-Moriguchi T, Willer T, Anderson ME, et al. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 2013 ; 341 : 896–899. [CrossRef] [PubMed] [Google Scholar]
  8. Kanagawa M, Kobayashi K, Tajiri M, et al. Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep 2016 ; 14 : 2209–2223. [CrossRef] [PubMed] [Google Scholar]
  9. Praissman JL, Willer T, Sheikh MO, et al. The functional O-mannose glycan on alpha-dystroglycan contains a phospho-ribitol primed for matriglycan addition. Elife 2016 ; 5 : 14473. [CrossRef] [Google Scholar]
  10. Geis T, Marquard K, Rodl T, et al. Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 2013 ; 14 : 205–213. [CrossRef] [PubMed] [Google Scholar]
  11. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, et al. A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 2011 ; 364 : 939–946. [CrossRef] [PubMed] [Google Scholar]
  12. Manya H, Chiba A, Yoshida A, et al. Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci USA 2004 ; 101 : 500–505. [CrossRef] [Google Scholar]
  13. Beltran-Valero de Bernabe D, Currier S, Steinbrecher A, et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 2002 ; 71 : 1033–1043. [CrossRef] [PubMed] [Google Scholar]
  14. Godfrey C, Clement E, Mein R, et al. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007 ; 130 : 2725–2735. [CrossRef] [PubMed] [Google Scholar]
  15. Yanagisawa A, Bouchet C, Quijano-Roy S, et al. POMT2 intragenic deletions and splicing abnormalities causing congenital muscular dystrophy with mental retardation. Eur J Med Genet 2009 ; 52 : 201–206. [CrossRef] [PubMed] [Google Scholar]
  16. Balci B, Uyanik G, Dincer P, et al. An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord 2005 ; 15 : 271–275. [CrossRef] [PubMed] [Google Scholar]
  17. Yoshida A, Kobayashi K, Manya H, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 2001 ; 1 : 717–724. [CrossRef] [PubMed] [Google Scholar]
  18. Santavuori P, Somer H, Sainio K, et al. Muscle-eye-brain disease (MEB). Brain Dev 1989 ; 11 : 147–153. [CrossRef] [PubMed] [Google Scholar]
  19. Manzini MC, Tambunan DE, Hill RS, et al. Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 2012 ; 91 : 541–547. [CrossRef] [PubMed] [Google Scholar]
  20. Hedberg C, Oldfors A, Darin N. B3GALNT2 is a gene associated with congenital muscular dystrophy with brain malformations. Eur J Hum Genet 2014 ; 22 : 707–710. [CrossRef] [PubMed] [Google Scholar]
  21. Stevens E, Carss KJ, Cirak S, et al. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of alpha-dystroglycan. Am J Hum Genet 2013 ; 92 : 354–365. [CrossRef] [PubMed] [Google Scholar]
  22. Inamori K, Hara Y, Willer T, et al. Xylosyl- and glucuronyltransferase functions of LARGE in alpha-dystroglycan modification are conserved in LARGE2. Glycobiology 2013 ; 23 : 295–302. [CrossRef] [PubMed] [Google Scholar]
  23. Willer T, Inamori K, Venzke D, et al. The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated alpha-dystroglycan functional glycosylation. Elife 2014 ; 3 : e14473. [CrossRef] [Google Scholar]
  24. Inamori K, Yoshida-Moriguchi T, Hara Y, et al. Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 2012 ; 335 : 93–96. [CrossRef] [PubMed] [Google Scholar]
  25. Yoshida-Moriguchi T, Yu L, Stalnaker SH, et al. O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 2010 ; 327 : 88–92. [CrossRef] [PubMed] [Google Scholar]
  26. Hildyard JC, Lacey E, Booler H, et al. Transgenic rescue of the LARGEmyd mouse: a LARGE therapeutic window?. PLoS One 2016 ; 11 : e0159853. [CrossRef] [PubMed] [Google Scholar]
  27. Vuillaumier-Barrot S, Bouchet-Seraphin C, Chelbi M, et al. Intragenic rearrangements in LARGE and POMGNT1 genes in severe dystroglycanopathies. Neuromuscul Disord 2011 ; 21 : 782–790. [CrossRef] [PubMed] [Google Scholar]
  28. Vuillaumier-Barrot S, Bouchet-Seraphin C, Chelbi M, et al. Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am J Hum Genet 2012 ; 91 : 1135–1143. [CrossRef] [PubMed] [Google Scholar]
  29. Astrea G, Pezzini I, Picillo E, et al. TMEM5-associated dystroglycanopathy presenting with CMD and mild limb-girdle muscle involvement. Neuromuscul Disord 2016 ; 26 : 459–461. [CrossRef] [PubMed] [Google Scholar]
  30. Clarke NF, Maugenre S, Vandebrouck A, et al. Congenital muscular dystrophy type 1D (MDC1D) due to a large intragenic insertion/deletion, involving intron 10 of the LARGE gene. Eur J Hum Genet 2011 ; 19 : 452–457. [CrossRef] [PubMed] [Google Scholar]
  31. Longman C, Brockington M, Torelli S, et al. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet 2003 ; 12 : 2853–2861. [CrossRef] [PubMed] [Google Scholar]
  32. Meilleur KG, Zukosky K, Medne L, et al. Clinical, pathologic, and mutational spectrum of dystroglycanopathy caused by LARGE mutations. J Neuropathol Exp Neurol 2014 ; 73 : 425–441. [CrossRef] [PubMed] [Google Scholar]
  33. Mercuri E, Messina S, Bruno C, et al. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology 2009 ; 72 : 1802–1809. [CrossRef] [PubMed] [Google Scholar]
  34. Van Reeuwijk J, Grewal PK, Salih MA, et al. Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum Genet 2007 ; 121 : 685–690. [CrossRef] [PubMed] [Google Scholar]
  35. Buysse K, Riemersma M, Powell G, et al. Missense mutations in beta-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 2013 ; 22 : 1746–1754. [CrossRef] [PubMed] [Google Scholar]
  36. Shaheen R, Faqeih E, Ansari S, et al. A truncating mutation in B3GNT1 causes severe Walker-Warburg syndrome. Neurogenetics 2013 ; 14 : 243–245. [CrossRef] [PubMed] [Google Scholar]
  37. Di Costanzo S, Balasubramanian A, Pond HL, et al. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet 2014 ; 23 : 5781–5792. [CrossRef] [PubMed] [Google Scholar]
  38. von Renesse A, Petkova MV, Lutzkendorf S, et al. POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet 2014 ; 51 : 275–282. [CrossRef] [PubMed] [Google Scholar]
  39. Kobayashi K, Nakahori Y, Miyake M, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 1998 ; 394 : 388–392. [CrossRef] [PubMed] [Google Scholar]
  40. Vuillaumier-Barrot S, Quijano-Roy S, Bouchet-Seraphin C, et al. Four Caucasian patients with mutations in the fukutin gene and variable clinical phenotype. Neuromuscul Disord 2009 ; 19 : 182–188. [CrossRef] [PubMed] [Google Scholar]
  41. Brockington M, Yuva Y, Prandini P, et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 2001 ; 10 : 2851–2859. [CrossRef] [PubMed] [Google Scholar]
  42. Walter MC, Petersen JA, Stucka R, et al. FKRP (826C>A) frequently causes limb-girdle muscular dystrophy in German patients. J Med Genet 2004 ; 41 : e50. [CrossRef] [PubMed] [Google Scholar]
  43. Beltran-Valero de Bernabe D, Voit T, Longman C, et al. Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome. J Med Genet 2004 ; 41 : e61. [CrossRef] [PubMed] [Google Scholar]
  44. Van Reeuwijk J, Olderode-Berends MJ, Van den Elzen C, et al. A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. Clin Genet 2010 ; 78 : 275–281. [CrossRef] [PubMed] [Google Scholar]
  45. Gerin I, Ury B, Breloy I, et al. ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto alpha-dystroglycan. Nat Commun 2016 ; 7 : 11534. [CrossRef] [PubMed] [Google Scholar]
  46. Roscioli T, Kamsteeg EJ, Buysse K, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nat Genet 2012 ; 44 : 581–585. [CrossRef] [PubMed] [Google Scholar]
  47. Willer T, Lee H, Lommel M, et al. ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet 2012 ; 44 : 575–580. [CrossRef] [PubMed] [Google Scholar]
  48. Maeda Y, Kinoshita T. Dolichol-phosphate mannose synthase: structure, function and regulation. Biochim Biophys Acta 2008 ; 1780 : 861–868. [CrossRef] [PubMed] [Google Scholar]
  49. Barone R, Aiello C, Race V, et al. DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol 2012 ; 72 : 550–558. [CrossRef] [PubMed] [Google Scholar]
  50. Lefeber DJ, de Brouwer AP, Morava E, et al. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet 2011 ; 7 : e1002427. [CrossRef] [PubMed] [Google Scholar]
  51. Yang AC, Ng BG, Moore SA, et al. Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol Genet Metab 2013 ; 110 : 345–351. [CrossRef] [PubMed] [Google Scholar]
  52. Lefeber DJ, Schonberger J, Morava E, et al. Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet 2009 ; 85 : 76–86. [CrossRef] [PubMed] [Google Scholar]
  53. Ning B, Elbein AD. Cloning, expression and characterization of the pig liver GDP-mannose pyrophosphorylase. Evidence that GDP-mannose and GDP-Glc pyrophosphorylases are different proteins. Eur J Biochem 2000 ; 267 : 6866–6874. [CrossRef] [PubMed] [Google Scholar]
  54. Carss KJ, Stevens E, Foley AR, et al. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of alpha-dystroglycan. Am J Hum Genet 2013 ; 93 : 29–41. [CrossRef] [PubMed] [Google Scholar]
  55. Raphael AR, Couthouis J, Sakamuri S, et al. Congenital muscular dystrophy and generalized epilepsy caused by GMPPB mutations. Brain Res 2014 ; 1575 : 66–71. [CrossRef] [PubMed] [Google Scholar]
  56. Inamori KI, Beedle AM, de Bernabe DB, et al. LARGE2-dependent glycosylation confers laminin-binding ability on proteoglycans. Glycobiology July 22, 2016. doi: 10.1093/glycob/cww075. [Google Scholar]
  57. Varki A. Essentials of glycobiology. Glycobiology 2015 ; 25 : 1323–1324. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.