Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Novembre 2016
Les cahiers de myologie
Page(s) 40 - 45
Section Mise au point
DOI https://doi.org/10.1051/medsci/201632s210
Publié en ligne 21 novembre 2016
  1. Godfrey C, Foley AR, Clement E, et al. Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 2011 ; 21 : 278–285. [CrossRef] [PubMed] [Google Scholar]
  2. Devisme L, Bouchet C, Gonzales M, et al. Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 2012 ; 135 : 469–482. [CrossRef] [PubMed] [Google Scholar]
  3. Stalnaker SH, Aoki K, Lim JM, et al. Glycomic analyses of mouse models of congenital muscular dystrophy. J Biol Chem 2011 ; 286 : 21180–21190. [CrossRef] [PubMed] [Google Scholar]
  4. Henry MD, Campbell KP. Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. Curr Opin Cell Biol 1996 ; 8 : 625–631. [CrossRef] [PubMed] [Google Scholar]
  5. Barresi R, Campbell KP. Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 2006 ; 119 : 199–207. [CrossRef] [PubMed] [Google Scholar]
  6. Michele DE, Barresi R, Kanagawa M, et al. Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 2002 ; 418 : 417–422. [CrossRef] [PubMed] [Google Scholar]
  7. Yoshida-Moriguchi T, Willer T, Anderson ME, et al. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 2013 ; 341 : 896–899. [CrossRef] [PubMed] [Google Scholar]
  8. Kanagawa M, Kobayashi K, Tajiri M, et al. Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep 2016 ; 14 : 2209–2223. [Google Scholar]
  9. Praissman JL, Willer T, Sheikh MO, et al. The functional O-mannose glycan on alpha-dystroglycan contains a phospho-ribitol primed for matriglycan addition. Elife 2016 ; 5 : 14473. [CrossRef] [Google Scholar]
  10. Geis T, Marquard K, Rodl T, et al. Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 2013 ; 14 : 205–213. [CrossRef] [PubMed] [Google Scholar]
  11. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, et al. A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 2011 ; 364 : 939–946. [CrossRef] [PubMed] [Google Scholar]
  12. Manya H, Chiba A, Yoshida A, et al. Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci USA 2004 ; 101 : 500–505. [CrossRef] [Google Scholar]
  13. Beltran-Valero de Bernabe D, Currier S, Steinbrecher A, et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 2002 ; 71 : 1033–1043. [CrossRef] [PubMed] [Google Scholar]
  14. Godfrey C, Clement E, Mein R, et al. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007 ; 130 : 2725–2735. [CrossRef] [PubMed] [Google Scholar]
  15. Yanagisawa A, Bouchet C, Quijano-Roy S, et al. POMT2 intragenic deletions and splicing abnormalities causing congenital muscular dystrophy with mental retardation. Eur J Med Genet 2009 ; 52 : 201–206. [CrossRef] [PubMed] [Google Scholar]
  16. Balci B, Uyanik G, Dincer P, et al. An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord 2005 ; 15 : 271–275. [CrossRef] [PubMed] [Google Scholar]
  17. Yoshida A, Kobayashi K, Manya H, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 2001 ; 1 : 717–724. [CrossRef] [PubMed] [Google Scholar]
  18. Santavuori P, Somer H, Sainio K, et al. Muscle-eye-brain disease (MEB). Brain Dev 1989 ; 11 : 147–153. [CrossRef] [PubMed] [Google Scholar]
  19. Manzini MC, Tambunan DE, Hill RS, et al. Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 2012 ; 91 : 541–547. [CrossRef] [PubMed] [Google Scholar]
  20. Hedberg C, Oldfors A, Darin N. B3GALNT2 is a gene associated with congenital muscular dystrophy with brain malformations. Eur J Hum Genet 2014 ; 22 : 707–710. [CrossRef] [PubMed] [Google Scholar]
  21. Stevens E, Carss KJ, Cirak S, et al. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of alpha-dystroglycan. Am J Hum Genet 2013 ; 92 : 354–365. [CrossRef] [PubMed] [Google Scholar]
  22. Inamori K, Hara Y, Willer T, et al. Xylosyl- and glucuronyltransferase functions of LARGE in alpha-dystroglycan modification are conserved in LARGE2. Glycobiology 2013 ; 23 : 295–302. [CrossRef] [PubMed] [Google Scholar]
  23. Willer T, Inamori K, Venzke D, et al. The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated alpha-dystroglycan functional glycosylation. Elife 2014 ; 3 : e14473. [CrossRef] [Google Scholar]
  24. Inamori K, Yoshida-Moriguchi T, Hara Y, et al. Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 2012 ; 335 : 93–96. [CrossRef] [PubMed] [Google Scholar]
  25. Yoshida-Moriguchi T, Yu L, Stalnaker SH, et al. O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 2010 ; 327 : 88–92. [CrossRef] [PubMed] [Google Scholar]
  26. Hildyard JC, Lacey E, Booler H, et al. Transgenic rescue of the LARGEmyd mouse: a LARGE therapeutic window?. PLoS One 2016 ; 11 : e0159853. [CrossRef] [PubMed] [Google Scholar]
  27. Vuillaumier-Barrot S, Bouchet-Seraphin C, Chelbi M, et al. Intragenic rearrangements in LARGE and POMGNT1 genes in severe dystroglycanopathies. Neuromuscul Disord 2011 ; 21 : 782–790. [CrossRef] [PubMed] [Google Scholar]
  28. Vuillaumier-Barrot S, Bouchet-Seraphin C, Chelbi M, et al. Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am J Hum Genet 2012 ; 91 : 1135–1143. [CrossRef] [PubMed] [Google Scholar]
  29. Astrea G, Pezzini I, Picillo E, et al. TMEM5-associated dystroglycanopathy presenting with CMD and mild limb-girdle muscle involvement. Neuromuscul Disord 2016 ; 26 : 459–461. [CrossRef] [PubMed] [Google Scholar]
  30. Clarke NF, Maugenre S, Vandebrouck A, et al. Congenital muscular dystrophy type 1D (MDC1D) due to a large intragenic insertion/deletion, involving intron 10 of the LARGE gene. Eur J Hum Genet 2011 ; 19 : 452–457. [CrossRef] [PubMed] [Google Scholar]
  31. Longman C, Brockington M, Torelli S, et al. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet 2003 ; 12 : 2853–2861. [CrossRef] [PubMed] [Google Scholar]
  32. Meilleur KG, Zukosky K, Medne L, et al. Clinical, pathologic, and mutational spectrum of dystroglycanopathy caused by LARGE mutations. J Neuropathol Exp Neurol 2014 ; 73 : 425–441. [CrossRef] [PubMed] [Google Scholar]
  33. Mercuri E, Messina S, Bruno C, et al. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology 2009 ; 72 : 1802–1809. [CrossRef] [PubMed] [Google Scholar]
  34. Van Reeuwijk J, Grewal PK, Salih MA, et al. Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum Genet 2007 ; 121 : 685–690. [CrossRef] [PubMed] [Google Scholar]
  35. Buysse K, Riemersma M, Powell G, et al. Missense mutations in beta-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 2013 ; 22 : 1746–1754. [CrossRef] [PubMed] [Google Scholar]
  36. Shaheen R, Faqeih E, Ansari S, et al. A truncating mutation in B3GNT1 causes severe Walker-Warburg syndrome. Neurogenetics 2013 ; 14 : 243–245. [CrossRef] [PubMed] [Google Scholar]
  37. Di Costanzo S, Balasubramanian A, Pond HL, et al. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet 2014 ; 23 : 5781–5792. [CrossRef] [PubMed] [Google Scholar]
  38. von Renesse A, Petkova MV, Lutzkendorf S, et al. POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet 2014 ; 51 : 275–282. [CrossRef] [PubMed] [Google Scholar]
  39. Kobayashi K, Nakahori Y, Miyake M, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 1998 ; 394 : 388–392. [CrossRef] [PubMed] [Google Scholar]
  40. Vuillaumier-Barrot S, Quijano-Roy S, Bouchet-Seraphin C, et al. Four Caucasian patients with mutations in the fukutin gene and variable clinical phenotype. Neuromuscul Disord 2009 ; 19 : 182–188. [CrossRef] [PubMed] [Google Scholar]
  41. Brockington M, Yuva Y, Prandini P, et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 2001 ; 10 : 2851–2859. [CrossRef] [PubMed] [Google Scholar]
  42. Walter MC, Petersen JA, Stucka R, et al. FKRP (826C>A) frequently causes limb-girdle muscular dystrophy in German patients. J Med Genet 2004 ; 41 : e50. [CrossRef] [PubMed] [Google Scholar]
  43. Beltran-Valero de Bernabe D, Voit T, Longman C, et al. Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome. J Med Genet 2004 ; 41 : e61. [CrossRef] [PubMed] [Google Scholar]
  44. Van Reeuwijk J, Olderode-Berends MJ, Van den Elzen C, et al. A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. Clin Genet 2010 ; 78 : 275–281. [CrossRef] [PubMed] [Google Scholar]
  45. Gerin I, Ury B, Breloy I, et al. ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto alpha-dystroglycan. Nat Commun 2016 ; 7 : 11534. [CrossRef] [PubMed] [Google Scholar]
  46. Roscioli T, Kamsteeg EJ, Buysse K, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nat Genet 2012 ; 44 : 581–585. [CrossRef] [PubMed] [Google Scholar]
  47. Willer T, Lee H, Lommel M, et al. ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet 2012 ; 44 : 575–580. [CrossRef] [PubMed] [Google Scholar]
  48. Maeda Y, Kinoshita T. Dolichol-phosphate mannose synthase: structure, function and regulation. Biochim Biophys Acta 2008 ; 1780 : 861–868. [CrossRef] [PubMed] [Google Scholar]
  49. Barone R, Aiello C, Race V, et al. DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol 2012 ; 72 : 550–558. [CrossRef] [PubMed] [Google Scholar]
  50. Lefeber DJ, de Brouwer AP, Morava E, et al. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet 2011 ; 7 : e1002427. [CrossRef] [PubMed] [Google Scholar]
  51. Yang AC, Ng BG, Moore SA, et al. Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol Genet Metab 2013 ; 110 : 345–351. [CrossRef] [PubMed] [Google Scholar]
  52. Lefeber DJ, Schonberger J, Morava E, et al. Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet 2009 ; 85 : 76–86. [CrossRef] [PubMed] [Google Scholar]
  53. Ning B, Elbein AD. Cloning, expression and characterization of the pig liver GDP-mannose pyrophosphorylase. Evidence that GDP-mannose and GDP-Glc pyrophosphorylases are different proteins. Eur J Biochem 2000 ; 267 : 6866–6874. [CrossRef] [PubMed] [Google Scholar]
  54. Carss KJ, Stevens E, Foley AR, et al. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of alpha-dystroglycan. Am J Hum Genet 2013 ; 93 : 29–41. [CrossRef] [PubMed] [Google Scholar]
  55. Raphael AR, Couthouis J, Sakamuri S, et al. Congenital muscular dystrophy and generalized epilepsy caused by GMPPB mutations. Brain Res 2014 ; 1575 : 66–71. [CrossRef] [PubMed] [Google Scholar]
  56. Inamori KI, Beedle AM, de Bernabe DB, et al. LARGE2-dependent glycosylation confers laminin-binding ability on proteoglycans. Glycobiology July 22, 2016. doi: 10.1093/glycob/cww075. [Google Scholar]
  57. Varki A. Essentials of glycobiology. Glycobiology 2015 ; 25 : 1323–1324. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.