Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Novembre 2016
Les cahiers de myologie
Page(s) 30 - 39
Section Dossier
DOI https://doi.org/10.1051/medsci/201632s209
Publié en ligne 21 novembre 2016
  1. Charron P, Arad M, Arbustini E, et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J 2010 ; 31 : 2715–2726. [CrossRef] [PubMed] [Google Scholar]
  2. Moretti A, Caron L, Nakano A, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 2006 ; 127 : 1151–1165. [CrossRef] [PubMed] [Google Scholar]
  3. Van Berlo JH, Molkentin JD. Most of the dust has settled: cKit+ progenitor cells are an irrelevant source of cardiac myocytes in vivo. Circ Res 2016 ; 118 : 17–19. [CrossRef] [PubMed] [Google Scholar]
  4. Balber AE. Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine. Stem Cells 2011 ; 29 : 570–575. [CrossRef] [PubMed] [Google Scholar]
  5. Koninckx R, Daniels A, Windmolders S, et al. The cardiac atrial appendage stem cell: a new and promising candidate for myocardial repair. Cardiovasc Res 2013 ; 97 : 413–423. [CrossRef] [PubMed] [Google Scholar]
  6. Roehrich ME, Spicher A, Milano G, et al. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int 2013 ; 2013 : 503047. [CrossRef] [PubMed] [Google Scholar]
  7. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 2015 ; 116 : 1413–1430. [CrossRef] [PubMed] [Google Scholar]
  8. Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 2013 ; 61 : 2329–2338. [CrossRef] [PubMed] [Google Scholar]
  9. Chong JJ, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 2014 ; 510 : 273–277. [CrossRef] [PubMed] [Google Scholar]
  10. Catelain C, Riveron S, Papadopoulos A, et al. Myoblasts and embryonic stem cells differentially engraft in a mouse model of genetic dilated cardiomyopathy. Mol Ther 2013 ; 21 : 1064–1075. [CrossRef] [PubMed] [Google Scholar]
  11. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 2007 ; 21 : 1345–1357. [CrossRef] [PubMed] [Google Scholar]
  12. Menasché P, Vanneaux V, Fabreguettes JR, et al. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J 2015 ; 36 : 743–750. [CrossRef] [PubMed] [Google Scholar]
  13. Menasché P, Vanneaux V, Hagège A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 2015 ; 36 : 2011–2017. [CrossRef] [PubMed] [Google Scholar]
  14. Menasché P. The future of stem cells: should we keep the stem and skip the cells?. J Thorac Cardiovasc Surg 2016 ; 152 : 345–349. [CrossRef] [PubMed] [Google Scholar]
  15. Menasché P, Vanneaux V. Stem cells for the treatment of heart failure. Curr Res Transl Med 2016 ; 64 : 97–106. [CrossRef] [PubMed] [Google Scholar]
  16. Silvestre JS, Menasché P. The evolution of the stem cell theory for heart failure. EBioMedicine 2015 ; 2 : 1871–1879. [CrossRef] [PubMed] [Google Scholar]
  17. Bobis-Wozowicz S, Kmiotek K, Sekula M, et al. Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells 2015 ; 33 : 2748–2761. [CrossRef] [PubMed] [Google Scholar]
  18. Ibrahim AG, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2014 ; 2 : 606–619. [CrossRef] [PubMed] [Google Scholar]
  19. Menasché P, Alfieri O, Janssens S, et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008 ; 117 : 1189–1200. [CrossRef] [PubMed] [Google Scholar]
  20. Fisher SA, Doree C, Mathur A, et al. Meta-analysis of cell therapy trials for patients with heart failure. Circ Res 2015 ; 116 : 1361–1377. [CrossRef] [PubMed] [Google Scholar]
  21. Harvey E, Fisher SA, Doree C, et al. Current evidence of the efficacy of cell-based therapies in heart failure. Circ J 2015 ; 79 : 229–236. [CrossRef] [PubMed] [Google Scholar]
  22. Kandala J, Upadhyay GA, Pokushalov E, et al. Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. Am J Cardiol 2013 ; 112 : 217–225. [CrossRef] [PubMed] [Google Scholar]
  23. Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 2013 ; 113 : 810–834. [CrossRef] [PubMed] [Google Scholar]
  24. Nowbar AN, Mielewczik M, Karavassilis M, et al. DAMASCENE writing group. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. Br Med J 2014 ; 348 : g2688. [CrossRef] [PubMed] [Google Scholar]
  25. Gho JM, Kummeling GJ, Koudstaal S, et al. Cell therapy, a novel remedy for dilated cardiomyopathy? A systematic review. J Card Fail 2013 ; 19 : 494–502. [Google Scholar]
  26. Smith DM. Assessing commercial opportunities for autologous and allogeneic cell-based products. Regen Med 2012 ; 7 : 721–732. [CrossRef] [PubMed] [Google Scholar]
  27. Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012 ; 308 : 2369–2379. [CrossRef] [PubMed] [Google Scholar]
  28. Jansen Of Lorkeers SJ, Eding JE, Vesterinen HM, et al. Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies. Circ Res 2015 ; 116 : 80–86. [CrossRef] [PubMed] [Google Scholar]
  29. Jackman CP, Shadrin IY, Carlson AL, et al. Human cardiac tissue engineering: from pluripotent stem cells to heart repair. Curr Opin Chem Eng 2015 ; 7 : 57–64. [CrossRef] [PubMed] [Google Scholar]
  30. Bellamy V, Vanneaux V, Bel A, et al. Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. J Heart Lung Transplant 2015 ; 34 : 1198–1207. [CrossRef] [PubMed] [Google Scholar]
  31. Segers VF, Lee RT. Biomaterials to enhance stem cell function in the heart. Circ Res 2011 ; 109 : 910–922. [CrossRef] [PubMed] [Google Scholar]
  32. Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Circ Res 2014 ; 114 : 354–367. [CrossRef] [PubMed] [Google Scholar]
  33. Kupfer ME, Ogle BM. Advanced imaging approaches for regenerative medicine: emerging technologies for monitoring stem cell fate in vitro and in vivo. Biotechnol J 2015 ; 10 : 1515–1528. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.