Free Access
Issue
Med Sci (Paris)
Volume 32, Number 2, Février 2016
Page(s) 167 - 174
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163202010
Published online 02 March 2016
  1. Flotte TR, Berns KI. Adeno-associated virus: a ubiquitous commensal of mammals. Hum Gene Ther 2005 ; 16 : 401–407. [CrossRef] [PubMed] [Google Scholar]
  2. Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev 2011 ; 12 : 341–355. [CrossRef] [PubMed] [Google Scholar]
  3. Rogers GL, Martino AT, Aslanidi GV, et al. Innate immune responses to AAV vectors. Front Microbiol 2011 ; 2 : 194. [CrossRef] [PubMed] [Google Scholar]
  4. Chandler RJ, LaFave MC, Varshney GK, et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest 2015 ; 125 : 870–880. [CrossRef] [PubMed] [Google Scholar]
  5. Nault JC, Datta S, Imbeaud S, et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet 2015 ; 47 : 1187–1193. [CrossRef] [PubMed] [Google Scholar]
  6. Kotin RM, Siniscalco M, Samulski RJ, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990 ; 87 : 2211–2215. [CrossRef] [Google Scholar]
  7. Kotin RM, Linden RM, Berns KI. Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 1992 ; 11 : 5071–5078. [PubMed] [Google Scholar]
  8. Linden MR, Ward P, Giraud C, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1996 ; 93 : 11288–11294. [CrossRef] [Google Scholar]
  9. Weitzman MD, Kyostio SR, Kotin RM, Owens RA. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci USA 1994 ; 91 : 5808–5812. [CrossRef] [Google Scholar]
  10. Henckaerts E, Linden RM. Adeno-associated virus: a key to the human genome? Future Virol 2010 ; 5 : 555–574. [CrossRef] [PubMed] [Google Scholar]
  11. Millet R, Jolinon N, Nguyen XN, et al. Impact of the MRN complex on adeno-associated virus integration and replication during co-infection with herpes simplex virus type 1. J Virol 2015 ; 89 : 6824–6834. [CrossRef] [PubMed] [Google Scholar]
  12. Daya S, Cortez N, Berns KI. Adeno-associated virus site-specific integration is mediated by proteins of the nonhomologous end-joining pathway. J Virol 2009 ; 83 : 11655–11664. [CrossRef] [PubMed] [Google Scholar]
  13. Song S, Laipis PJ, Berns KI, Flotte TR. Effect of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle. Proc Natl Acad Sci USA 2001 ; 98 : 4084–4088. [CrossRef] [Google Scholar]
  14. Song S, Lu Y, Choi YK, et al. DNA-dependent PK inhibits adeno-associated virus DNA integration. Proc Natl Acad Sci USA 2004 ; 101 : 2112–2116. [CrossRef] [Google Scholar]
  15. Schnepp BC, Jensen RL, Chen CL, et al. Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 2005 ; 79 : 14793–14803. [CrossRef] [PubMed] [Google Scholar]
  16. Schnepp BC, Jensen RL, Clark KR, Johnson PR. Infectious molecular clones of adeno-associated virus isolated directly from human tissues. J Virol 2009 ; 83 : 1456–1464. [CrossRef] [PubMed] [Google Scholar]
  17. Chen C-L, Jensen RL, Schnepp BC, et al. Molecular characterization of adeno-associated viruses infecting children. J Virol 2005 ; 79 : 14781–14792. [CrossRef] [PubMed] [Google Scholar]
  18. Gao G, Alvira MR, Somanathan S, et al. Adeno-associated viruses undergo substantial evolution in primates during natural infection. Proc Natl Acad Sci USA 2003 ; 100 : 6081–6086. [CrossRef] [Google Scholar]
  19. Gao G, Vandenberghe LH, Alvira MR, et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 2004 ; 78 : 6381–6388. [CrossRef] [PubMed] [Google Scholar]
  20. Hüser D, Gogol-Doring A, Lutter T, et al. Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog 2010 ; 6 : e1000985. [CrossRef] [PubMed] [Google Scholar]
  21. Janovitz T, Klein IA, Oliveira T, et al. High-throughput sequencing reveals principles of adeno-associated virus serotype 2 integration. J Virol 2013 ; 87 : 8559–8568. [CrossRef] [PubMed] [Google Scholar]
  22. Huser D, Gogol-Doring A, Chen W, Heilbronn R. Adeno-associated virus type 2 wild-type and vector-mediated genomic integration profiles of human diploid fibroblasts analyzed by third-generation PacBio DNA sequencing. J Virol 2014 ; 88 : 11253–11263. [CrossRef] [PubMed] [Google Scholar]
  23. Haberman RP, McCown TJ, Samulski RJ. Novel transcriptional regulatory signals in the adeno-associated virus terminal repeat A/D junction element. J Virol 2000 ; 74 : 8732–8739. [CrossRef] [PubMed] [Google Scholar]
  24. Dion S, Demattei MV, Renault S. Les domaines à doigts de zinc : vers la modification de la structure et de l’activité des génomes. Med Sci (Paris) 2007 ; 23 : 834–839. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. Dupret B, Angrand PO. L’ingénierie des génomes par les TALEN. Med Sci (Paris) 2014 ; 30 : 186–193. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  26. La Gilgenkrantz H. révolution de CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  27. Schambach A, Zychlinski D, Ehrnstroem B, Baum C. Biosafety features of lentiviral vectors. Hum Gene Ther 2013 ; 24 : 132–142. [CrossRef] [PubMed] [Google Scholar]
  28. Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene 2005 ; 24 : 7656–7672. [CrossRef] [PubMed] [Google Scholar]
  29. Jiang H, Pierce GF, Ozelo MC, et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006 ; 14 : 452–455. [CrossRef] [PubMed] [Google Scholar]
  30. Schnepp BC, Clark KR, Klemanski DL, et al. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol 2003 ; 77 : 3495–3504. [CrossRef] [PubMed] [Google Scholar]
  31. Sun X, Lu Y, Bish LT, et al. Molecular analysis of vector genome structures after liver transduction by conventional and self-complementary adeno-associated viral serotype vectors in murine and nonhuman primate models. Hum Gene Ther 2010 ; 21 : 750–761. [CrossRef] [PubMed] [Google Scholar]
  32. Duan D, Sharma P, Yang J, et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 1998 ; 72 : 8568–8577. [PubMed] [Google Scholar]
  33. Duan D, Yan Z, Yue Y, Engelhardt JF. Structural analysis of adeno-associated virus transduction circular intermediates. Virology 1999 ; 261 : 8–14. [CrossRef] [PubMed] [Google Scholar]
  34. Yang J, Zhou W, Zhang Y, et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J Virol 1999 ; 73 : 9468–9477. [PubMed] [Google Scholar]
  35. Nakai H, Yant SR, Storm TA, et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 2001 ; 75 : 6969–6976. [CrossRef] [PubMed] [Google Scholar]
  36. Miller DG, Trobridge GD, Petek LM, et al. Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J Virol 2005 ; 79 : 11434–11442. [CrossRef] [PubMed] [Google Scholar]
  37. Nakai H, Montini E, Fuess S, et al. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 2003 ; 30 : 297–302. [CrossRef] [Google Scholar]
  38. Nakai H, Wu X, Fuess S, et al. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 2005 ; 79 : 3606–3614. [CrossRef] [PubMed] [Google Scholar]
  39. Bell P, Moscioni AD, McCarter RJ, et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol Ther 2006 ; 14 : 34–44. [CrossRef] [PubMed] [Google Scholar]
  40. Bell P, Wang L, Lebherz C, et al. No evidence for tumorigenesis of AAV vectors in a large-scale study in mice. Mol Ther 2005 ; 12 : 299–306. [CrossRef] [PubMed] [Google Scholar]
  41. Donsante A, Miller DG, Li Y, et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 2007 ; 317 : 477. [CrossRef] [PubMed] [Google Scholar]
  42. Ranzani M, Cesana D, Bartholomae CC, et al. Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer. Nat Methods 2013 ; 10 : 155–161. [CrossRef] [PubMed] [Google Scholar]
  43. Miller DG, Petek LM, Russell DW. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat Genet 2004 ; 36 : 767–773. [CrossRef] [PubMed] [Google Scholar]
  44. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev 2014 ; 15 : 445–451. [CrossRef] [Google Scholar]
  45. Li H, Malani N, Hamilton SR, et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood 2011 ; 117 : 3311–3319. [CrossRef] [PubMed] [Google Scholar]
  46. Tremblay JP. CRISPR, un système qui permet de corriger ou de modifier l’expression de gènes responsables de maladies héréditaires. Med Sci (Paris) 2015 ; 31 : 1014–1022. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.