Free Access
Med Sci (Paris)
Volume 32, Number 2, Février 2016
Page(s) 175 - 182
Section M/S Revues
Published online 02 March 2016
  1. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 2014 ; 383 : 1490–1502. [CrossRef] [PubMed] [Google Scholar]
  2. Sommer F, Backhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol 2013 ; 11 : 227–238. [CrossRef] [PubMed] [Google Scholar]
  3. Jobin C. Microbiome : un nouveau facteur de risque de cancer colorectal ? Med Sci (Paris) 2013 ; 29 : 582–585. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Normand S, Secher T, Chamaillard M. La dysbiose, une nouvelle entité en médecine ? Med Sci (Paris) 2013 ; 29 : 586–589. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Allen-Vercoe E, Jobin C. Fusobacterium and Enterobacteriaceae: important players for CRC? Immunol Lett 2014 ; 162 : 54–61. [CrossRef] [PubMed] [Google Scholar]
  6. Viljoen KS, Dakshinamurthy A, Goldberg P, Blackburn JM. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One 2015 ; 10 : e0119462. [CrossRef] [PubMed] [Google Scholar]
  7. Zackular JP, Baxter NT, Iverson KD, et al. The gut microbiome modulates colon tumorigenesis. MBio 2013 ; 4 : e00692–e00613. [Google Scholar]
  8. Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015 ; 60 : 208–215. [CrossRef] [PubMed] [Google Scholar]
  9. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009 ; 15 : 1016–1022. [CrossRef] [PubMed] [Google Scholar]
  10. Rhee KJ, Wu S, Wu X, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun 2009 ; 77 : 1708–1718. [CrossRef] [PubMed] [Google Scholar]
  11. Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 2003 ; 124 : 392–400. [CrossRef] [PubMed] [Google Scholar]
  12. Kim JM, Lee JY, Kim YJ. Inhibition of apoptosis in Bacteroides fragilis enterotoxin-stimulated intestinal epithelial cells through the induction of c-IAP-2. Eur J Immunol 2008 ; 38 : 2190–2199. [CrossRef] [PubMed] [Google Scholar]
  13. Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA 2011 ; 108 : 15354–15359. [CrossRef] [Google Scholar]
  14. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012 ; 22 : 292–298. [CrossRef] [PubMed] [Google Scholar]
  15. Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013 ; 14 : 207–215. [CrossRef] [PubMed] [Google Scholar]
  16. Shenker BJ, Datar S. Fusobacterium nucleatum inhibits human T-cell activation by arresting cells in the mid-G1 phase of the cell cycle. Infect Immun 1995 ; 63 : 4830–4836. [PubMed] [Google Scholar]
  17. Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 2013 ; 14 : 195–206. [CrossRef] [PubMed] [Google Scholar]
  18. Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015 ; 42 : 344–355. [CrossRef] [PubMed] [Google Scholar]
  19. Arthur JC, Perez-Chanona E, Muhlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012 ; 338 : 120–123. [CrossRef] [PubMed] [Google Scholar]
  20. Bonnet M, Buc E, Sauvanet P, et al. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res 2014 ; 20 : 859–867. [CrossRef] [PubMed] [Google Scholar]
  21. Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 2015 ; 6 : 6528. [CrossRef] [PubMed] [Google Scholar]
  22. Raisch J, Buc E, Bonnet M, et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol 2014 ; 20 : 6560–6572. [CrossRef] [PubMed] [Google Scholar]
  23. Maddocks OD, Short AJ, Donnenberg MS, et al. Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PLoS One 2009 ; 4 : e5517. [CrossRef] [PubMed] [Google Scholar]
  24. Prorok-Hamon M, Friswell MK, Alswied A, et al. Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut 2014 ; 63 : 761–770. [CrossRef] [PubMed] [Google Scholar]
  25. Lemercier C. Les infections bactériennes vues du génome eucaryote : cassures double-brin, inflammation et cancer. Med Sci (Paris) 2014 ; 30 : 758–764. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  26. Arthur JC, Gharaibeh RZ, Muhlbauer M, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun 2014 ; 5 : 4724. [CrossRef] [PubMed] [Google Scholar]
  27. Cuevas-Ramos G, Petit CR, Marcq I, et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 2010 ; 107 : 11537–11542. [CrossRef] [Google Scholar]
  28. Vizcaino MI, Crawford JM. The colibactin warhead crosslinks DNA. Nat Chem 2015 ; 7 : 411–417. [CrossRef] [PubMed] [Google Scholar]
  29. Cougnoux A, Dalmasso G, Martinez R, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 2014 ; 63 : 1932–1942. [CrossRef] [PubMed] [Google Scholar]
  30. Secher T, Samba-Louaka A, Oswald E, Nougayrede JP. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS One 2013 ; 8 : e77157. [CrossRef] [PubMed] [Google Scholar]
  31. Cougnoux A, Delmas J, Gibold L, et al. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut 2015 ; pii : gutjnl-2014-307241. [Google Scholar]
  32. Miraglia AG, Travaglione S, Meschini S, et al. Cytotoxic necrotizing factor 1 prevents apoptosis via the Akt/IkappaB kinase pathway: role of nuclear factor-kappaB and Bcl-2. Mol Biol Cell 2007 ; 18 : 2735–2744. [CrossRef] [PubMed] [Google Scholar]
  33. Maddocks OD, Scanlon KM, Donnenberg MS. An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. MBio 2013 ; 4 : e00152–e00113. [CrossRef] [PubMed] [Google Scholar]
  34. Raisch J, Rolhion N, Dubois A, et al. Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. Lab Invest 2015 ; 95 : 296–307. [CrossRef] [PubMed] [Google Scholar]
  35. Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013 ; 342 : 967–970. [CrossRef] [PubMed] [Google Scholar]
  36. Sobhani I. Helicobacter pylori et cancer gastrique. Med Sci (Paris) 2004 ; 20 : 431–436. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.