Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 2, Février 2016
Page(s) 167 - 174
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163202010
Publié en ligne 2 mars 2016
  1. Flotte TR, Berns KI. Adeno-associated virus: a ubiquitous commensal of mammals. Hum Gene Ther 2005 ; 16 : 401–407. [CrossRef] [PubMed]
  2. Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev 2011 ; 12 : 341–355. [CrossRef] [PubMed]
  3. Rogers GL, Martino AT, Aslanidi GV, et al. Innate immune responses to AAV vectors. Front Microbiol 2011 ; 2 : 194. [CrossRef] [PubMed]
  4. Chandler RJ, LaFave MC, Varshney GK, et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest 2015 ; 125 : 870–880. [CrossRef] [PubMed]
  5. Nault JC, Datta S, Imbeaud S, et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet 2015 ; 47 : 1187–1193. [CrossRef] [PubMed]
  6. Kotin RM, Siniscalco M, Samulski RJ, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990 ; 87 : 2211–2215. [CrossRef]
  7. Kotin RM, Linden RM, Berns KI. Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 1992 ; 11 : 5071–5078. [PubMed]
  8. Linden MR, Ward P, Giraud C, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1996 ; 93 : 11288–11294. [CrossRef]
  9. Weitzman MD, Kyostio SR, Kotin RM, Owens RA. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci USA 1994 ; 91 : 5808–5812. [CrossRef]
  10. Henckaerts E, Linden RM. Adeno-associated virus: a key to the human genome? Future Virol 2010 ; 5 : 555–574. [CrossRef] [PubMed]
  11. Millet R, Jolinon N, Nguyen XN, et al. Impact of the MRN complex on adeno-associated virus integration and replication during co-infection with herpes simplex virus type 1. J Virol 2015 ; 89 : 6824–6834. [CrossRef] [PubMed]
  12. Daya S, Cortez N, Berns KI. Adeno-associated virus site-specific integration is mediated by proteins of the nonhomologous end-joining pathway. J Virol 2009 ; 83 : 11655–11664. [CrossRef] [PubMed]
  13. Song S, Laipis PJ, Berns KI, Flotte TR. Effect of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle. Proc Natl Acad Sci USA 2001 ; 98 : 4084–4088. [CrossRef]
  14. Song S, Lu Y, Choi YK, et al. DNA-dependent PK inhibits adeno-associated virus DNA integration. Proc Natl Acad Sci USA 2004 ; 101 : 2112–2116. [CrossRef]
  15. Schnepp BC, Jensen RL, Chen CL, et al. Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 2005 ; 79 : 14793–14803. [CrossRef] [PubMed]
  16. Schnepp BC, Jensen RL, Clark KR, Johnson PR. Infectious molecular clones of adeno-associated virus isolated directly from human tissues. J Virol 2009 ; 83 : 1456–1464. [CrossRef] [PubMed]
  17. Chen C-L, Jensen RL, Schnepp BC, et al. Molecular characterization of adeno-associated viruses infecting children. J Virol 2005 ; 79 : 14781–14792. [CrossRef] [PubMed]
  18. Gao G, Alvira MR, Somanathan S, et al. Adeno-associated viruses undergo substantial evolution in primates during natural infection. Proc Natl Acad Sci USA 2003 ; 100 : 6081–6086. [CrossRef]
  19. Gao G, Vandenberghe LH, Alvira MR, et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 2004 ; 78 : 6381–6388. [CrossRef] [PubMed]
  20. Hüser D, Gogol-Doring A, Lutter T, et al. Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog 2010 ; 6 : e1000985. [CrossRef] [PubMed]
  21. Janovitz T, Klein IA, Oliveira T, et al. High-throughput sequencing reveals principles of adeno-associated virus serotype 2 integration. J Virol 2013 ; 87 : 8559–8568. [CrossRef] [PubMed]
  22. Huser D, Gogol-Doring A, Chen W, Heilbronn R. Adeno-associated virus type 2 wild-type and vector-mediated genomic integration profiles of human diploid fibroblasts analyzed by third-generation PacBio DNA sequencing. J Virol 2014 ; 88 : 11253–11263. [CrossRef] [PubMed]
  23. Haberman RP, McCown TJ, Samulski RJ. Novel transcriptional regulatory signals in the adeno-associated virus terminal repeat A/D junction element. J Virol 2000 ; 74 : 8732–8739. [CrossRef] [PubMed]
  24. Dion S, Demattei MV, Renault S. Les domaines à doigts de zinc : vers la modification de la structure et de l’activité des génomes. Med Sci (Paris) 2007 ; 23 : 834–839. [CrossRef] [EDP Sciences] [PubMed]
  25. Dupret B, Angrand PO. L’ingénierie des génomes par les TALEN. Med Sci (Paris) 2014 ; 30 : 186–193. [CrossRef] [EDP Sciences] [PubMed]
  26. La Gilgenkrantz H. révolution de CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed]
  27. Schambach A, Zychlinski D, Ehrnstroem B, Baum C. Biosafety features of lentiviral vectors. Hum Gene Ther 2013 ; 24 : 132–142. [CrossRef] [PubMed]
  28. Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene 2005 ; 24 : 7656–7672. [CrossRef] [PubMed]
  29. Jiang H, Pierce GF, Ozelo MC, et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006 ; 14 : 452–455. [CrossRef] [PubMed]
  30. Schnepp BC, Clark KR, Klemanski DL, et al. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol 2003 ; 77 : 3495–3504. [CrossRef] [PubMed]
  31. Sun X, Lu Y, Bish LT, et al. Molecular analysis of vector genome structures after liver transduction by conventional and self-complementary adeno-associated viral serotype vectors in murine and nonhuman primate models. Hum Gene Ther 2010 ; 21 : 750–761. [CrossRef] [PubMed]
  32. Duan D, Sharma P, Yang J, et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 1998 ; 72 : 8568–8577. [PubMed]
  33. Duan D, Yan Z, Yue Y, Engelhardt JF. Structural analysis of adeno-associated virus transduction circular intermediates. Virology 1999 ; 261 : 8–14. [CrossRef] [PubMed]
  34. Yang J, Zhou W, Zhang Y, et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J Virol 1999 ; 73 : 9468–9477. [PubMed]
  35. Nakai H, Yant SR, Storm TA, et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 2001 ; 75 : 6969–6976. [CrossRef] [PubMed]
  36. Miller DG, Trobridge GD, Petek LM, et al. Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J Virol 2005 ; 79 : 11434–11442. [CrossRef] [PubMed]
  37. Nakai H, Montini E, Fuess S, et al. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 2003 ; 30 : 297–302. [CrossRef]
  38. Nakai H, Wu X, Fuess S, et al. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 2005 ; 79 : 3606–3614. [CrossRef] [PubMed]
  39. Bell P, Moscioni AD, McCarter RJ, et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol Ther 2006 ; 14 : 34–44. [CrossRef] [PubMed]
  40. Bell P, Wang L, Lebherz C, et al. No evidence for tumorigenesis of AAV vectors in a large-scale study in mice. Mol Ther 2005 ; 12 : 299–306. [CrossRef] [PubMed]
  41. Donsante A, Miller DG, Li Y, et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 2007 ; 317 : 477. [CrossRef] [PubMed]
  42. Ranzani M, Cesana D, Bartholomae CC, et al. Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer. Nat Methods 2013 ; 10 : 155–161. [CrossRef] [PubMed]
  43. Miller DG, Petek LM, Russell DW. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat Genet 2004 ; 36 : 767–773. [CrossRef] [PubMed]
  44. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev 2014 ; 15 : 445–451. [CrossRef]
  45. Li H, Malani N, Hamilton SR, et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood 2011 ; 117 : 3311–3319. [CrossRef] [PubMed]
  46. Tremblay JP. CRISPR, un système qui permet de corriger ou de modifier l’expression de gènes responsables de maladies héréditaires. Med Sci (Paris) 2015 ; 31 : 1014–1022. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.