Free Access
Issue
Med Sci (Paris)
Volume 32, Number 1, Janvier 2016
Origine développementale de la santé et des maladies (DOHaD), environnement et épigénétique
Page(s) 27 - 34
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163201006
Published online 05 February 2016
  1. Eskenazi B, Marks AR, Catalano R, et al. Low birthweight in New York City and upstate New York following the events of September 11th. Hum Reprod 2007 ; 22 : 3013–3020. [CrossRef] [PubMed] [Google Scholar]
  2. Cao-Lei L, Massart R, Suderman MJ, et al. DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: project ice storm. PLoS One 2014 ; 9 : e107653. [CrossRef] [PubMed] [Google Scholar]
  3. Weaver ICG, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004 ; 7 : 847–854. [CrossRef] [PubMed] [Google Scholar]
  4. McGowan PO, Suderman M, Sasaki A, et al. Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 2012 ; 6 : e14739. [CrossRef] [Google Scholar]
  5. Provencal N, Suderman MJ, Guillemin C, et al. Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cells. PLoS One 2014 ; 9 : e89839. [CrossRef] [PubMed] [Google Scholar]
  6. Suderman M, McGowan PO, Sasaki A, et al. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc Natl Acad Sci USA 2012 ; 109 Suppl 2 : 17266–17272. [CrossRef] [Google Scholar]
  7. Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 2014 ; 17 : 667–669. [CrossRef] [PubMed] [Google Scholar]
  8. McGowan PO, Sasaki A, D’Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009 ; 12 : 342–348. [CrossRef] [PubMed] [Google Scholar]
  9. Szyf M. Lamarck revisited: epigenetic inheritance of ancestral odor fear conditioning. Nat Neurosci 2014 ; 17 : 2–4. [CrossRef] [PubMed] [Google Scholar]
  10. Jordan B. Épigénétique et résilience. Med Sci (Paris) 2013 ; 29 : 325–328. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Klengel T, Mehta D, Anacker C, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 2013 ; 16 : 33–41. [CrossRef] [PubMed] [Google Scholar]
  12. Guillemin C, Provencal N, Suderman M, et al. DNA methylation signature of childhood chronic physical aggression in T cells of both men and women. PLoS One 2014 ; 9 : e86822. [CrossRef] [PubMed] [Google Scholar]
  13. Teh AL, Pan H, Chen L, et al. The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res 2014 ; 24 : 1064–1074. [CrossRef] [PubMed] [Google Scholar]
  14. Rando OJ, Verstrepen KJ. Timescales of genetic and epigenetic inheritance. Cell 2007 ; 128 : 655–668. [CrossRef] [PubMed] [Google Scholar]
  15. Meaney MJ, Ferguson-Smith AC. Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat Neurosci 2010 ; 13 : 1313–1318. [CrossRef] [PubMed] [Google Scholar]
  16. Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 2012 ; 13 : 153–162. [CrossRef] [PubMed] [Google Scholar]
  17. Lim JP, Brunet A. Bridging the transgenerational gap with epigenetic memory. Trends Genet 2013 ; 29 : 176–186. [CrossRef] [PubMed] [Google Scholar]
  18. Gueant JL, Daval JL, Vert P, Nicolas JP. Folates et programmation fœtale : rôle des mécanismes nutrigénomiques et épigénomiques. Bull Acad Natl Med 2012 ; 196 : 1829–1842. [PubMed] [Google Scholar]
  19. Allis CD, Berger SL, Cote J, et al. New nomenclature for chromatin-modifying enzymes. Cell 2007 ; 131 : 633–636. [Google Scholar]
  20. Waddington C. Canalisation of development and inheritance of acquired characters. Nature 1942 ; 152 : 563. [CrossRef] [Google Scholar]
  21. Riggs AD, Xiong Z. Methylation and epigenetic fidelity. Proc Natl Acad Sci U S A 2004 ; 101 : 4–5. [CrossRef] [PubMed] [Google Scholar]
  22. Bird A. Perceptions of epigenetics. Nature 2007 ; 447 : 396–398. [CrossRef] [PubMed] [Google Scholar]
  23. Orozco-Solis R, Sassone-Corsi P. Epigenetic control and the circadian clock: linking metabolism to neuronal responses. Neuroscience 2014 ; 264 : 76–87. [CrossRef] [PubMed] [Google Scholar]
  24. Rudenko A, Tsai LH. Epigenetic regulation in memory and cognitive disorders. Neuroscience 2014 ; 264 : 51–63. [CrossRef] [PubMed] [Google Scholar]
  25. Chi AS, Bernstein BE. Developmental biology. Pluripotent chromatin state. Science 2009 ; 323 : 220–221. [CrossRef] [PubMed] [Google Scholar]
  26. Graf T, Enver T. Forcing cells to change lineages. Nature 2009 ; 462 : 587–594. [CrossRef] [PubMed] [Google Scholar]
  27. Junien C, Gallou-Kabani C, Vige A, Gross MS. Épigénomique nutritionnelle du syndrome métabolique. Med Sci (Paris) 2005 ; 21 : 396–404. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014 ; 157 : 77–94. [CrossRef] [PubMed] [Google Scholar]
  29. Ho SM, Johnson A, Tarapore P, et al. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J 2012 ; 53 : 289–305. [CrossRef] [PubMed] [Google Scholar]
  30. Junien C, Gabory A, Attig L. Le dimorphisme sexuel au XXIe siècle. Med Sci (Paris) 2012 ; 28 : 185–192. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. La Weber M. méthylation de l’ADN, un acteur-clé de la pluripotence. Med Sci (Paris) 2011 ; 27 : 483–485. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Ptashne M. Faddish stuff: epigenetics and the inheritance of acquired characteristics. FASEB J 2013 ; 27 : 1–2. [CrossRef] [PubMed] [Google Scholar]
  33. Branciamore S, Rodin AS, Riggs AD, Rodin SN. Enhanced evolution by stochastically variable modification of epigenetic marks in the early embryo. Proc Natl Acad Sci USA 2014 ; 111 : 6353–6358. [CrossRef] [Google Scholar]
  34. Ooi SK, O’Donnell AH, Bestor TH. Mammalian cytosine methylation at a glance. J Cell Sci 2009 ; 122 : 2787–2791. [CrossRef] [PubMed] [Google Scholar]
  35. Warner MJ, Ozanne SE. Mechanisms involved in the developmental programming of adulthood disease. Biochem J 2010 ; 427 : 333–347. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. Gapp K, Woldemichael BT, Bohacek J, Mansuy IM. Epigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience 2014 ; 264 : 99–111. [CrossRef] [PubMed] [Google Scholar]
  37. Kelly-Irving M, Lepage B, Dedieu D, et al. Childhood adversity as a risk for cancer: findings from the 1958 British birth cohort study. BMC Public Health 2013 ; 13 : 767. [CrossRef] [PubMed] [Google Scholar]
  38. Heard E. The dynamics of epigenetic changes in a range of organisms. Curr Top Dev Biol 2013; 104 : xiii–xv. [CrossRef] [PubMed] [Google Scholar]
  39. Ozanne SE, Sandovici I, Constancia M. Maternal diet, aging and diabetes meet at a chromatin loop. Aging (Albany NY) 2011 ; 3 : 548–554. [CrossRef] [PubMed] [Google Scholar]
  40. Hsu PY, Hsu HK, Singer GA, et al. Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping. Genome Res 2010 ; 20 : 733–744. [CrossRef] [PubMed] [Google Scholar]
  41. Metivier R, Gallais R, Tiffoche C, et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008 ; 452 : 45–50. [CrossRef] [PubMed] [Google Scholar]
  42. Pinney SE, Simmons RA. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab 2010 ; 21 : 223–229. [CrossRef] [PubMed] [Google Scholar]
  43. Xue Z, Ye Q, Anson SR, et al. Transcriptional interference by antisense RNA is required for circadian clock function. Nature 2014 ; 514 : 650–653. [CrossRef] [PubMed] [Google Scholar]
  44. Woldemichael BT, Bohacek J, Gapp K, Mansuy IM. Epigenetics of memory and plasticity. Prog Mol Biol Transl Sci 2014 ; 122 : 305–340. [CrossRef] [PubMed] [Google Scholar]
  45. Mathias PC, Elmhiri G, de Oliveira JC, et al. Maternal diet, bioactive molecules, and exercising as reprogramming tools of metabolic programming. Eur J Nutr 2014 ; 53 : 711–722. [CrossRef] [PubMed] [Google Scholar]
  46. Weaver IC, Champagne FA, Brown SE, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 2005 ; 25 : 11045–11054. [CrossRef] [PubMed] [Google Scholar]
  47. Burdge GC, Lillycrop KA, Phillips ES, et al. Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr 2009 ; 139 : 1054–1060. [CrossRef] [PubMed] [Google Scholar]
  48. Attig L, Vige A, Gabory A, et al. Dietary alleviation of maternal obesity and diabetes: increased resistance to diet-induced obesity transcriptional and epigenetic signatures. PLoS One 2013 ; 8 : e66816. [CrossRef] [PubMed] [Google Scholar]
  49. Remacle C, Dumortier O, Bol V, et al. Intrauterine programming of the endocrine pancreas. Diabetes Obes Metab 2007 ; 9 (suppl 2) : 196–209. [CrossRef] [PubMed] [Google Scholar]
  50. Edinger RS, Mambo E, Evans MI. Estrogen-dependent transcriptional activation and vitellogenin gene memory. Mol Endocrinol 1997 ; 11 : 1985–1993. [CrossRef] [PubMed] [Google Scholar]
  51. Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 2010 ; 6 : 665–675. [CrossRef] [PubMed] [Google Scholar]
  52. Miao F, Chen Z, Genuth S, et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 2014 ; 63 : 1748–1762. [CrossRef] [PubMed] [Google Scholar]
  53. Pirola L, Balcerczyk A, Tothill RW, et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res 2011 ; 21 : 1601–1615. [CrossRef] [PubMed] [Google Scholar]
  54. Grossniklaus U, Kelly WG, Ferguson-Smith AC, et al. Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 2013 ; 14 : 228–235. [CrossRef] [PubMed] [Google Scholar]
  55. Sela M, Kloog Y, Rechavi O. Non-coding RNAs as the bridge between epigenetic mechanisms, lineages and domains of life. J Physiol 2014 ; 592 : 2369–2373. [CrossRef] [PubMed] [Google Scholar]
  56. Cuzin F, Rassoulzadegan M. Non-Mendelian epigenetic heredity: gametic RNAs as epigenetic regulators and transgenerational signals. Essays Biochem 2010 ; 48 : 101–106. [CrossRef] [PubMed] [Google Scholar]
  57. Rechavi O, Houri-Ze’evi L, Anava S, et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 2014 ; 158 : 277–287. [CrossRef] [PubMed] [Google Scholar]
  58. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 2014 ; 157 : 95–109. [CrossRef] [PubMed] [Google Scholar]
  59. Ferguson-Smith AC, Patti ME. You are what your dad ate. Cell Metab 2011 ; 13 : 115–117. [CrossRef] [PubMed] [Google Scholar]
  60. O’Campo P. Are we producing the right kind of actionable evidence for the social determinants of health? J Urban Health 2012 ; 89 : 881–893. [CrossRef] [PubMed] [Google Scholar]
  61. Lange UC, Schneider R. What an epigenome remembers. Bioessays 2010 ; 32 : 659–668. [CrossRef] [PubMed] [Google Scholar]
  62. Dardente H. Redondance génétique et synchronisation cellulaire dans les horloges circadiennes. Med Sci (Paris) 2008 ; 24 : 270–276. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.