Free Access
Issue
Med Sci (Paris)
Volume 32, Number 1, Janvier 2016
Origine développementale de la santé et des maladies (DOHaD), environnement et épigénétique
Page(s) 21 - 26
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163201005
Published online 05 February 2016
  1. Galobardes B, Lynch JW, Smith GD. Is the association between childhood socioeconomic circumstances and cause-specific mortality established? Update of a systematic review. J Epidemiol Community Health 2008 ; 62 : 387–390. [CrossRef] [PubMed] [Google Scholar]
  2. Melchior M, Moffitt TE, Milne BJ, et al. Why do children from socioeconomically disadvantaged families suffer from poor health when they reach adulthood? A life-course study. Am J Epidemiol 2007 ; 166 : 966–974. [CrossRef] [PubMed] [Google Scholar]
  3. Montez JK, Hayward MD. Cumulative childhood adversity, educational attainment, and active life expectancy among US adults. Demography 2014 ; 51 : 413–435. [CrossRef] [PubMed] [Google Scholar]
  4. Miller GE, Chen E, Fok AK, et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci USA 2009 ; 106 : 14716–14721. [CrossRef] [Google Scholar]
  5. Stringhini S, Batty GD, Bovet P, et al. Association of lifecourse socioeconomic status with chronic inflammation and type 2 diabetes risk: the Whitehall II prospective cohort study. PLoS Med 2013 ; 10 : e1001479. [CrossRef] [PubMed] [Google Scholar]
  6. Gruenewald TL, Karlamangla AS, Hu P, et al. History of socioeconomic disadvantage and allostatic load in later life. Soc Sci Med 2012 ; 74 : 75–83. [CrossRef] [PubMed] [Google Scholar]
  7. Robertson T, Batty GD, Der G, et al. Is telomere length socially patterned? Evidence from the West of Scotland Twenty-07 Study. PLoS One 2012 ; 7 : e41805. [CrossRef] [PubMed] [Google Scholar]
  8. Demetriou CA, van Veldhoven K, Relton C, et al. Biological embedding of early life exposures and disease risk in humans: a role for DNA methylation. Eur J Clin Invest 2015 ; 45 : 303–332. [CrossRef] [PubMed] [Google Scholar]
  9. Kelly-Irving M, Lepage B, Dedieu D, et al. Adverse childhood experiences and premature all-cause mortality. Eur J Epidemiol 2013 ; 28 : 721–734. [CrossRef] [PubMed] [Google Scholar]
  10. Kelly-Irving M, Lepage B, Dedieu D, et al. Childhood adversity as a risk for cancer: findings from the 1958 British birth cohort study. BMC Public Health 2013 ; 13 : 767. [CrossRef] [PubMed] [Google Scholar]
  11. Gustafsson PE, Janlert U, Theorell T, et al. Social and material adversity from adolescence to adulthood and allostatic load in middle-aged women and men: results from the Northern Swedish Cohort. Ann Behav Med 2012 ; 43 : 117–128. [CrossRef] [PubMed] [Google Scholar]
  12. Essex MJ, Boyce WT, Hertzman C, et al. Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence. Child Dev 2013 ; 84 : 58–75. [CrossRef] [PubMed] [Google Scholar]
  13. Shonkoff JP, Garner AS. The lifelong effects of early childhood adversity and toxic stress. Pediatrics 2012 ; 129 : e232–e246. [CrossRef] [PubMed] [Google Scholar]
  14. Hostinar CE, Sullivan RM, Gunnar MR. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development. Psychol Bull 2014 ; 140 : 256–282. [CrossRef] [PubMed] [Google Scholar]
  15. Eschwege E, Charles MA, Basdevant A. Enquête épidémiologique nationale sur le surpoids et l’obésité. Rapport. Neuilly-sur-Seine : Éditions Institut Roche de l’obésité, 2009. [Google Scholar]
  16. Diouf I, Charles MA, Blondel B, et al. Discordant time trends in maternal body size and offspring birthweight of term deliveries in France between 1972 and 2003: data from the French National Perinatal Surveys. Paediatr Perinat Epidemiol 2011 ; 25 : 210–217. [CrossRef] [PubMed] [Google Scholar]
  17. Guelinckx I, Devlieger R, Beckers K, Vansant G. Maternal obesity: pregnancy complications, gestational weight gain and nutrition. Obes Rev 2008 ; 9 : 140–150. [CrossRef] [PubMed] [Google Scholar]
  18. Catalano PM. Obesity and pregnancy: the propagation of a viscous cycle? J Clin Endocrinol Metab 2003 ; 88 : 3505–3506. [CrossRef] [PubMed] [Google Scholar]
  19. Dalfra MG, Busetto L, Chilelli NC, Lapolla A. Pregnancy and foetal outcome after bariatric surgery: a review of recent studies. J Matern Fetal Neonatal Med 2012 ; 25 : 1537–1543. [CrossRef] [PubMed] [Google Scholar]
  20. Kral JG, Biron S, Simard S, et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 2006 ; 118 : e1644–e1649. [CrossRef] [PubMed] [Google Scholar]
  21. Frischknecht F, Bruhwiler H, Raio L, Luscher KP. Changes in pre-pregnancy weight and weight gain during pregnancy: retrospective comparison between 1986 and 2004. Swiss Med Wkly 2009 ; 139 : 52–55. [PubMed] [Google Scholar]
  22. Neufeld LM, Haas JD, Grajeda R, Martorell R. Changes in maternal weight from the first to second trimester of pregnancy are associated with fetal growth and infant length at birth. Am J Clin Nutr 2004 ; 79 : 646–652. [CrossRef] [PubMed] [Google Scholar]
  23. Brisbois TD, Farmer AP, McCargar LJ. Early markers of adult obesity: a review. Obes Rev 2012 ; 13 : 347–367. [CrossRef] [PubMed] [Google Scholar]
  24. Nohr EA, Bech BH, Vaeth M, et al. Obesity, gestational weight gain and preterm birth: a study within the Danish National Birth Cohort. Paediatr Perinat Epidemiol 2007 ; 21 : 5–14. [CrossRef] [PubMed] [Google Scholar]
  25. Rumball CW, Bloomfield FH, Oliver MH, Harding JE. Different periods of periconceptional undernutrition have different effects on growth, metabolic and endocrine status in fetal sheep. Pediatr Res 2009 ; 66 : 605–613. [CrossRef] [PubMed] [Google Scholar]
  26. Barker DJ, Winter PD, Osmond C, et al. Weight in infancy and death from ischaemic heart disease. Lancet 1989 ; 2 : 577–580. [CrossRef] [PubMed] [Google Scholar]
  27. Stettler N, Zemel BS, Kumanyika S, Stallings VA. Infant weight gain and childhood overweight status in a multicenter, cohort study. Pediatrics 2002 ; 109 : 194–199. [CrossRef] [PubMed] [Google Scholar]
  28. Druet C, Stettler N, Sharp S, et al. Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr Perinat Epidemiol 2012 ; 26 : 19–26. [CrossRef] [PubMed] [Google Scholar]
  29. Botton J, Heude B, Maccario J, et al. Postnatal weight and height growth velocities at different ages between birth and 5 y and body composition in adolescent boys and girls. Am J Clin Nutr 2008 ; 87 : 1760–1768. [CrossRef] [PubMed] [Google Scholar]
  30. Arenz S, Ruckerl R, Koletzko B, von Kries R. Breast-feeding and childhood obesity: a systematic review. Int J Obes Relat Metab Disord 2004 ; 28 : 1247–1256. [CrossRef] [PubMed] [Google Scholar]
  31. Owen CG, Martin RM, Whincup PH, et al. The effect of breastfeeding on mean body mass index throughout life: a quantitative review of published and unpublished observational evidence. Am J Clin Nutr 2005 ; 82 : 1298–1307. [CrossRef] [PubMed] [Google Scholar]
  32. Martin RM, Patel R, Kramer MS, et al. Effects of promoting longer-term and exclusive breastfeeding on adiposity and insulin-like growth factor-I at age 11.5 years: a randomized trial. JAMA 2013 ; 309 : 1005–1013. [CrossRef] [PubMed] [Google Scholar]
  33. Weber M, Grote V, Closa-Monasterolo R, et al. Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am J Clin Nutr 2014 ; 99 : 1041–1051. [CrossRef] [PubMed] [Google Scholar]
  34. Moorcroft KE, Marshall JL, McCormick FM. Association between timing of introducing solid foods and obesity in infancy and childhood: a systematic review. Matern Child Nutr 2011 ; 7 : 3–26. [CrossRef] [PubMed] [Google Scholar]
  35. Jwa SC, Fujiwara T, Kondo N. Latent protective effects of breastfeeding on late childhood overweight and obesity: a nationwide prospective study. Obesity 2014 ; 22 : 1527–1537. [CrossRef] [Google Scholar]
  36. Regnault N, Botton J, Forhan A, et al. Determinants of early ponderal and statural growth in full-term infants in the EDEN mother-child cohort study. Am J Clin Nutr 2010 ; 92 : 594–602. [CrossRef] [PubMed] [Google Scholar]
  37. Elks CE, Loos RJ, Sharp SJ, et al. Genetic markers of adult obesity risk are associated with greater early infancy weight gain and growth. PLoS Med 2010 ; 7 : e1000284. [CrossRef] [PubMed] [Google Scholar]
  38. Inserm. Pesticides : effets sur la santé. Collection Expertise collective. Paris : Inserm, 2013. [Google Scholar]
  39. Romitti PA, Herring AM, Dennis LK, Wong-Gibbons DL. Meta-analysis: pesticides and orofacial clefts. Cleft Palate Craniofac J 2007 ; 44 : 358–365. [CrossRef] [PubMed] [Google Scholar]
  40. Rocheleau CM, Romitti PA, Dennis LK. Pesticides and hypospadias: a meta-analysis. J Pediatr Urol 2009 ; 5 : 17–24. [CrossRef] [PubMed] [Google Scholar]
  41. Harari R, Julvez J, Murata K, et al. Neurobehavioral deficits and increased blood pressure in school-age children prenatally exposed to pesticides. Environ Health Perspect 2010 ; 118 : 890–896. [CrossRef] [PubMed] [Google Scholar]
  42. González-Alzaga B, Lacasaña M, Aguilar-Garduño C, et al. A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicol Lett 2014 ; 230 : 104–121. [CrossRef] [PubMed] [Google Scholar]
  43. Pedersen M, Giorgis-Allemand L, Bernard C, et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respir Med 2013 ; 1 : 695–704. [CrossRef] [Google Scholar]
  44. Clark NA, Demers PA, Karr CJ, et al. Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect 2010 ; 118 : 284–290. [CrossRef] [PubMed] [Google Scholar]
  45. Schultz ES, Gruzieva O, Bellander T, et al. Traffic-related air pollution and lung function in children at 8 years of age: a birth cohort study. Am J Respir Crit Care Med 2012 ; 186 : 1286–1291. [CrossRef] [PubMed] [Google Scholar]
  46. Guxens M, Aguilera I, Ballester F, et al. Prenatal exposure to residential air pollution and infant mental development: modulation by antioxidants and detoxification factors. Environ Health Perspect 2012 ; 120 : 144–149. [CrossRef] [PubMed] [Google Scholar]
  47. Perera FP, Li Z, Whyatt R, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009 ; 124 : e195–e202. [CrossRef] [PubMed] [Google Scholar]
  48. Baccarelli A, Wright RO, Bollati V, et al. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 2009 ; 179 : 572–578. [CrossRef] [PubMed] [Google Scholar]
  49. Michels KB, Harris HR, Barault L. Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS One 2011 ; 6 : e25254. [CrossRef] [PubMed] [Google Scholar]
  50. Filiberto AC, Maccani MA, Koestler D, et al. Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics 2011 ; 6 : 566–572. [CrossRef] [PubMed] [Google Scholar]
  51. Veras MM, Damaceno-Rodrigues NR, Caldini EG, et al. Particulate urban air pollution affects the functional morphology of mouse placenta. Biol Reprod 2008 ; 79 : 578–584. [CrossRef] [PubMed] [Google Scholar]
  52. Van den Hooven EH, Pierik FH, de Kluizenaar Y, et al. Air pollution exposure and markers of placental growth and function: the generation R study. Environ Health Perspect 2012 ; 120 : 1753–1759. [CrossRef] [PubMed] [Google Scholar]
  53. Ritz C, Ruminski W, Hougaard KS, et al. Germline mutation rates in mice following in utero exposure to diesel exhaust particles by maternal inhalation. Mutat Res 2011 ; 712 : 55–58. [CrossRef] [PubMed] [Google Scholar]
  54. Ono N, Oshio S, Niwata Y, et al. Prenatal exposure to diesel exhaust impairs mouse spermatogenesis. Inhal Toxicol 2007 ; 19 : 275–281. [CrossRef] [Google Scholar]
  55. Moisan MP, Le Moal M. Le stress dans tous ses états. Med Sci (Paris) 2012 ; 28 : 612–617. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.