Free Access
Med Sci (Paris)
Volume 32, Number 1, Janvier 2016
Origine développementale de la santé et des maladies (DOHaD), environnement et épigénétique
Page(s) 15 - 20
Section M/S Revues
Published online 05 February 2016
  1. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986 ; 1 : 1077–1081. [CrossRef] [PubMed] [Google Scholar]
  2. Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med 1977 ; 31 : 91–95. [PubMed] [Google Scholar]
  3. Barker DJP. Programming the baby. Mothers, babies and healt in later life. Edinburgh : Churchill Livingstone, 1998 : 13–42. [Google Scholar]
  4. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992 ; 35 : 595–601. [CrossRef] [PubMed] [Google Scholar]
  5. Joseph KS, Kramer MS. Review of the evidence on fetal and early childhood antecedents of adult chronic disease. Epidemiol Rev 1996 ; 18 : 158–174. [CrossRef] [PubMed] [Google Scholar]
  6. Leon DA, Lithell HO, Vagero D, et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–29. BMJ 1998 ; 317 : 241–245. [CrossRef] [PubMed] [Google Scholar]
  7. Rich-Edwards JW, Stampfer MJ, Manson JE, et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 1997 ; 315 : 396–400. [CrossRef] [PubMed] [Google Scholar]
  8. Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev 2006 ; 82 : 485–491. [CrossRef] [PubMed] [Google Scholar]
  9. Leger J, Levy-Marchal C, Bloch J, et al. Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: regional cohort study. BMJ 1997 ; 315 : 341–347. [CrossRef] [PubMed] [Google Scholar]
  10. Zureik M, Bonithon-Kopp C, Lecomte E, et al. Weights at birth and in early infancy, systolic pressure, and left ventricular structure in subjects aged 8 to 24 years. Hypertension 1996 ; 27 : 339–345. [CrossRef] [PubMed] [Google Scholar]
  11. McCance DR, Pettitt DJ, Hanson RL, et al. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 1994 ; 308 : 942–945. [CrossRef] [PubMed] [Google Scholar]
  12. Lucas A, Morley R, Isaacs E. Nutrition and mental development. Nutr Rev 2001 ; 59 : S24–S33. [CrossRef] [PubMed] [Google Scholar]
  13. Gluckman PD, Hanson MA, Bateson P, et al. Towards a new developmental synthesis: adaptive developmental plasticity and human disease. Lancet 2009 ; 373 : 1654–1657. [CrossRef] [PubMed] [Google Scholar]
  14. Krieger N. Embodiment: a conceptual glossary for epidemiology. J Epidemiol Community Health 2005 ; 59 : 350–355. [CrossRef] [PubMed] [Google Scholar]
  15. Cirulli F, Berry A, Alleva E. Early disruption of the mother-infant relationship: effects on brain plasticity and implications for psychopathology. Neurosci Biobehav Rev 2003 ; 27 : 73–82. [CrossRef] [PubMed] [Google Scholar]
  16. Horwitz AV, Widom CS, McLaughlin J, et al. The impact of childhood abuse and neglect on adult mental health: a prospective study. J Health Soc Behav 2001 ; 42 : 184–201. [CrossRef] [PubMed] [Google Scholar]
  17. Caspi A, Harrington H, Moffitt TE, et al. Socially isolated children 20 years later: risk of cardiovascular disease. Arch Pediatr Adolesc Med 2006 ; 160 : 805–811. [CrossRef] [PubMed] [Google Scholar]
  18. Kelly-Irving M, Lepage B, Dedieu D, et al. Childhood adversity as a risk for cancer: findings from the 1958 British birth cohort study. BMC Public Health 2013 ; 13 : 767. [CrossRef] [PubMed] [Google Scholar]
  19. Teicher MH, Andersen SL, Polcari A, et al. Developmental neurobiology of childhood stress and trauma. Psychiatr Clin North Am 2002 ; 25 : 397–426. [CrossRef] [PubMed] [Google Scholar]
  20. Barouki R, Gluckman PD, Grandjean P, et al. Developmental origins of non-communicable disease: implications for research and public health. Environ Health 2012 ; 11 : 42. [CrossRef] [PubMed] [Google Scholar]
  21. Junien C. Les déterminants précoces de la santé et des maladies : épigénéique et environnement. Bull Acad Nat Med 2011 ; 195 : 511–527. [Google Scholar]
  22. Halfon N, Larson K, Lu M, et al. Lifecourse health development: past, present and future. Matern Child Health J 2014 ; 18 : 344–365. [CrossRef] [PubMed] [Google Scholar]
  23. Uchida S, Hara K, Kobayashi A, et al. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 2010 ; 30 : 15007–15018. [CrossRef] [PubMed] [Google Scholar]
  24. Snoeck A, Remacle C, Reusens B, et al. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 1990 ; 57 : 107–118. [CrossRef] [PubMed] [Google Scholar]
  25. Dahri S, Snoeck A, Reusens-Billen B, et al. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes 1991 ; 40 : (suppl 2) : 115–120. [CrossRef] [PubMed] [Google Scholar]
  26. Langley-Evans SC. Critical differences between two low protein diet protocols in the programming of hypertension in the rat. Int J Food Sci Nutr 2000 ; 51 : 11–17. [CrossRef] [PubMed] [Google Scholar]
  27. Garofano A, Czernichow P, Breant B. Effect of ageing on beta-cell mass and function in rats malnourished during the perinatal period. Diabetologia 1999 ; 42 : 711–718. [CrossRef] [PubMed] [Google Scholar]
  28. Nyirenda MJ, Seckl JR. Intrauterine events and the programming of adulthood disease: the role of fetal glucocorticoid exposure. Int J Mol Med 1998 ; 2 : 607–614. [PubMed] [Google Scholar]
  29. Breant B, Gesina E, Blondeau B. Nutrition, glucocorticoids and pancreas development. Horm Res 2006 ; 65 : (suppl 3) : 98–104. [CrossRef] [PubMed] [Google Scholar]
  30. Valtat B, Riveline JP, Zhang P, et al. Fetal PGC-1alpha overexpression programs adult pancreatic beta-cell dysfunction. Diabetes 2013 ; 62 : 1206–1216. [CrossRef] [PubMed] [Google Scholar]
  31. Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 2001 ; 50 : 2279–2286. [CrossRef] [PubMed] [Google Scholar]
  32. Pinney SE, Jaeckle Santos LJ, Han Y, et al. Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat. Diabetologia 2011 ; 54 : 2606–2614. [CrossRef] [PubMed] [Google Scholar]
  33. Reinisch JM, Simon NG, Karow WG, et al. Prenatal exposure to prednisone in humans and animals retards intrauterine growth. Science 1978 ; 202 : 436–438. [CrossRef] [PubMed] [Google Scholar]
  34. De Vries A, Holmes MC, Heijnis A, et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest 2007 ; 117 : 1058–1067. [CrossRef] [PubMed] [Google Scholar]
  35. Moisan MP, Le Moal M. Le stress dans tous ses états. Med Sci (Paris) 2012 ; 28 : 612–617. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.