Accès gratuit
Numéro |
Med Sci (Paris)
Volume 32, Numéro 1, Janvier 2016
Origine développementale de la santé et des maladies (DOHaD), environnement et épigénétique
|
|
---|---|---|
Page(s) | 27 - 34 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20163201006 | |
Publié en ligne | 5 février 2016 |
- Eskenazi B, Marks AR, Catalano R, et al. Low birthweight in New York City and upstate New York following the events of September 11th. Hum Reprod 2007 ; 22 : 3013–3020. [CrossRef] [PubMed] [Google Scholar]
- Cao-Lei L, Massart R, Suderman MJ, et al. DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: project ice storm. PLoS One 2014 ; 9 : e107653. [CrossRef] [PubMed] [Google Scholar]
- Weaver ICG, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004 ; 7 : 847–854. [Google Scholar]
- McGowan PO, Suderman M, Sasaki A, et al. Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 2012 ; 6 : e14739. [CrossRef] [Google Scholar]
- Provencal N, Suderman MJ, Guillemin C, et al. Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cells. PLoS One 2014 ; 9 : e89839. [CrossRef] [PubMed] [Google Scholar]
- Suderman M, McGowan PO, Sasaki A, et al. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc Natl Acad Sci USA 2012 ; 109 Suppl 2 : 17266–17272. [CrossRef] [Google Scholar]
- Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 2014 ; 17 : 667–669. [CrossRef] [PubMed] [Google Scholar]
- McGowan PO, Sasaki A, D’Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009 ; 12 : 342–348. [CrossRef] [PubMed] [Google Scholar]
- Szyf M. Lamarck revisited: epigenetic inheritance of ancestral odor fear conditioning. Nat Neurosci 2014 ; 17 : 2–4. [CrossRef] [PubMed] [Google Scholar]
- Jordan B. Épigénétique et résilience. Med Sci (Paris) 2013 ; 29 : 325–328. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Klengel T, Mehta D, Anacker C, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 2013 ; 16 : 33–41. [CrossRef] [PubMed] [Google Scholar]
- Guillemin C, Provencal N, Suderman M, et al. DNA methylation signature of childhood chronic physical aggression in T cells of both men and women. PLoS One 2014 ; 9 : e86822. [CrossRef] [PubMed] [Google Scholar]
- Teh AL, Pan H, Chen L, et al. The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res 2014 ; 24 : 1064–1074. [CrossRef] [PubMed] [Google Scholar]
- Rando OJ, Verstrepen KJ. Timescales of genetic and epigenetic inheritance. Cell 2007 ; 128 : 655–668. [CrossRef] [PubMed] [Google Scholar]
- Meaney MJ, Ferguson-Smith AC. Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat Neurosci 2010 ; 13 : 1313–1318. [CrossRef] [PubMed] [Google Scholar]
- Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 2012 ; 13 : 153–162. [CrossRef] [PubMed] [Google Scholar]
- Lim JP, Brunet A. Bridging the transgenerational gap with epigenetic memory. Trends Genet 2013 ; 29 : 176–186. [CrossRef] [PubMed] [Google Scholar]
- Gueant JL, Daval JL, Vert P, Nicolas JP. Folates et programmation fœtale : rôle des mécanismes nutrigénomiques et épigénomiques. Bull Acad Natl Med 2012 ; 196 : 1829–1842. [PubMed] [Google Scholar]
- Allis CD, Berger SL, Cote J, et al. New nomenclature for chromatin-modifying enzymes. Cell 2007 ; 131 : 633–636. [Google Scholar]
- Waddington C. Canalisation of development and inheritance of acquired characters. Nature 1942 ; 152 : 563. [CrossRef] [Google Scholar]
- Riggs AD, Xiong Z. Methylation and epigenetic fidelity. Proc Natl Acad Sci U S A 2004 ; 101 : 4–5. [CrossRef] [PubMed] [Google Scholar]
- Bird A. Perceptions of epigenetics. Nature 2007 ; 447 : 396–398. [CrossRef] [PubMed] [Google Scholar]
- Orozco-Solis R, Sassone-Corsi P. Epigenetic control and the circadian clock: linking metabolism to neuronal responses. Neuroscience 2014 ; 264 : 76–87. [CrossRef] [PubMed] [Google Scholar]
- Rudenko A, Tsai LH. Epigenetic regulation in memory and cognitive disorders. Neuroscience 2014 ; 264 : 51–63. [CrossRef] [PubMed] [Google Scholar]
- Chi AS, Bernstein BE. Developmental biology. Pluripotent chromatin state. Science 2009 ; 323 : 220–221. [CrossRef] [PubMed] [Google Scholar]
- Graf T, Enver T. Forcing cells to change lineages. Nature 2009 ; 462 : 587–594. [CrossRef] [PubMed] [Google Scholar]
- Junien C, Gallou-Kabani C, Vige A, Gross MS. Épigénomique nutritionnelle du syndrome métabolique. Med Sci (Paris) 2005 ; 21 : 396–404. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014 ; 157 : 77–94. [CrossRef] [PubMed] [Google Scholar]
- Ho SM, Johnson A, Tarapore P, et al. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J 2012 ; 53 : 289–305. [CrossRef] [PubMed] [Google Scholar]
- Junien C, Gabory A, Attig L. Le dimorphisme sexuel au XXIe siècle. Med Sci (Paris) 2012 ; 28 : 185–192. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- La Weber M. méthylation de l’ADN, un acteur-clé de la pluripotence. Med Sci (Paris) 2011 ; 27 : 483–485. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Ptashne M. Faddish stuff: epigenetics and the inheritance of acquired characteristics. FASEB J 2013 ; 27 : 1–2. [CrossRef] [PubMed] [Google Scholar]
- Branciamore S, Rodin AS, Riggs AD, Rodin SN. Enhanced evolution by stochastically variable modification of epigenetic marks in the early embryo. Proc Natl Acad Sci USA 2014 ; 111 : 6353–6358. [CrossRef] [Google Scholar]
- Ooi SK, O’Donnell AH, Bestor TH. Mammalian cytosine methylation at a glance. J Cell Sci 2009 ; 122 : 2787–2791. [CrossRef] [PubMed] [Google Scholar]
- Warner MJ, Ozanne SE. Mechanisms involved in the developmental programming of adulthood disease. Biochem J 2010 ; 427 : 333–347. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Gapp K, Woldemichael BT, Bohacek J, Mansuy IM. Epigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience 2014 ; 264 : 99–111. [CrossRef] [PubMed] [Google Scholar]
- Kelly-Irving M, Lepage B, Dedieu D, et al. Childhood adversity as a risk for cancer: findings from the 1958 British birth cohort study. BMC Public Health 2013 ; 13 : 767. [CrossRef] [PubMed] [Google Scholar]
- Heard E. The dynamics of epigenetic changes in a range of organisms. Curr Top Dev Biol 2013; 104 : xiii–xv. [CrossRef] [PubMed] [Google Scholar]
- Ozanne SE, Sandovici I, Constancia M. Maternal diet, aging and diabetes meet at a chromatin loop. Aging (Albany NY) 2011 ; 3 : 548–554. [CrossRef] [PubMed] [Google Scholar]
- Hsu PY, Hsu HK, Singer GA, et al. Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping. Genome Res 2010 ; 20 : 733–744. [CrossRef] [PubMed] [Google Scholar]
- Metivier R, Gallais R, Tiffoche C, et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008 ; 452 : 45–50. [CrossRef] [PubMed] [Google Scholar]
- Pinney SE, Simmons RA. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab 2010 ; 21 : 223–229. [CrossRef] [PubMed] [Google Scholar]
- Xue Z, Ye Q, Anson SR, et al. Transcriptional interference by antisense RNA is required for circadian clock function. Nature 2014 ; 514 : 650–653. [CrossRef] [PubMed] [Google Scholar]
- Woldemichael BT, Bohacek J, Gapp K, Mansuy IM. Epigenetics of memory and plasticity. Prog Mol Biol Transl Sci 2014 ; 122 : 305–340. [CrossRef] [PubMed] [Google Scholar]
- Mathias PC, Elmhiri G, de Oliveira JC, et al. Maternal diet, bioactive molecules, and exercising as reprogramming tools of metabolic programming. Eur J Nutr 2014 ; 53 : 711–722. [CrossRef] [PubMed] [Google Scholar]
- Weaver IC, Champagne FA, Brown SE, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 2005 ; 25 : 11045–11054. [CrossRef] [PubMed] [Google Scholar]
- Burdge GC, Lillycrop KA, Phillips ES, et al. Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr 2009 ; 139 : 1054–1060. [CrossRef] [PubMed] [Google Scholar]
- Attig L, Vige A, Gabory A, et al. Dietary alleviation of maternal obesity and diabetes: increased resistance to diet-induced obesity transcriptional and epigenetic signatures. PLoS One 2013 ; 8 : e66816. [CrossRef] [PubMed] [Google Scholar]
- Remacle C, Dumortier O, Bol V, et al. Intrauterine programming of the endocrine pancreas. Diabetes Obes Metab 2007 ; 9 (suppl 2) : 196–209. [CrossRef] [PubMed] [Google Scholar]
- Edinger RS, Mambo E, Evans MI. Estrogen-dependent transcriptional activation and vitellogenin gene memory. Mol Endocrinol 1997 ; 11 : 1985–1993. [CrossRef] [PubMed] [Google Scholar]
- Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 2010 ; 6 : 665–675. [CrossRef] [PubMed] [Google Scholar]
- Miao F, Chen Z, Genuth S, et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 2014 ; 63 : 1748–1762. [CrossRef] [PubMed] [Google Scholar]
- Pirola L, Balcerczyk A, Tothill RW, et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res 2011 ; 21 : 1601–1615. [CrossRef] [PubMed] [Google Scholar]
- Grossniklaus U, Kelly WG, Ferguson-Smith AC, et al. Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 2013 ; 14 : 228–235. [CrossRef] [PubMed] [Google Scholar]
- Sela M, Kloog Y, Rechavi O. Non-coding RNAs as the bridge between epigenetic mechanisms, lineages and domains of life. J Physiol 2014 ; 592 : 2369–2373. [CrossRef] [PubMed] [Google Scholar]
- Cuzin F, Rassoulzadegan M. Non-Mendelian epigenetic heredity: gametic RNAs as epigenetic regulators and transgenerational signals. Essays Biochem 2010 ; 48 : 101–106. [CrossRef] [PubMed] [Google Scholar]
- Rechavi O, Houri-Ze’evi L, Anava S, et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 2014 ; 158 : 277–287. [CrossRef] [PubMed] [Google Scholar]
- Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 2014 ; 157 : 95–109. [CrossRef] [PubMed] [Google Scholar]
- Ferguson-Smith AC, Patti ME. You are what your dad ate. Cell Metab 2011 ; 13 : 115–117. [CrossRef] [PubMed] [Google Scholar]
- O’Campo P. Are we producing the right kind of actionable evidence for the social determinants of health? J Urban Health 2012 ; 89 : 881–893. [CrossRef] [PubMed] [Google Scholar]
- Lange UC, Schneider R. What an epigenome remembers. Bioessays 2010 ; 32 : 659–668. [CrossRef] [PubMed] [Google Scholar]
- Dardente H. Redondance génétique et synchronisation cellulaire dans les horloges circadiennes. Med Sci (Paris) 2008 ; 24 : 270–276. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.