Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 1, Janvier 2016
Origine développementale de la santé et des maladies (DOHaD), environnement et épigénétique
Page(s) 35 - 44
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163201007
Publié en ligne 5 février 2016
  1. Almond D, Currie J. Killing me softly: the fetal origins hypothesis. J Econ Perspect 2011 ; 25 : 153–172. [CrossRef] [PubMed]
  2. Yan W. Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Mol Cell Endocrinol 2014 ; 398 : 24–30. [CrossRef] [PubMed]
  3. Grossniklaus U, Kelly WG, Ferguson-Smith AC, et al. Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 2013 ; 14 : 228–235. [CrossRef] [PubMed]
  4. Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 2014 ; 17 : 667–669. [CrossRef] [PubMed]
  5. Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 2002 ; 10 : 682–688. [CrossRef] [PubMed]
  6. Attig L, Vige A, Gabory A, et al. Dietary alleviation of maternal obesity and diabetes: increased resistance to diet-induced obesity transcriptional and epigenetic signatures. PLoS One 2013 ; 8 : e66816. [CrossRef] [PubMed]
  7. Arai JA, Feig LA. Long-lasting and transgenerational effects of an environmental enrichment on memory formation. Brain Res Bull 2011 ; 85 : 30–35. [CrossRef] [PubMed]
  8. Junien C. L’empreinte parentale : de la guerre des sexes à la solidarité entre générations. Med Sci (Paris) 2000 ; 3 : 336–344. [CrossRef]
  9. Bromfield JJ, Schjenken JE, Chin PY, et al. Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc Natl Acad Sci USA 2014 ; 111 : 2200–2205. [CrossRef]
  10. Curley JP, Mashoodh R, Champagne FA. Epigenetics and the origins of paternal effects. Horm Behav 2011 ; 59 : 306–314. [CrossRef] [PubMed]
  11. Junien C, Gabory A, Attig L. Le dimorphisme sexuel au XXIe siècle. Med Sci (Paris) 2012 ; 28 : 185–192. [CrossRef] [EDP Sciences] [PubMed]
  12. Pembrey M, Saffery R, Bygren LO. Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J Med Genet 2014 ; 51 : 563–572. [CrossRef] [PubMed]
  13. Lane M, Robker RL, Robertson SA. Parenting from before conception. Science 2014 ; 345 : 756–760. [CrossRef] [PubMed]
  14. Dunn GA, Morgan CP, Bale TL. Sex-specificity in transgenerational epigenetic programming. Horm Behav 2010 ; 59 : 290–295. [CrossRef] [PubMed]
  15. Sugathan A, Waxman DJ. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol 2013 ; 33 : 3594–3610. [CrossRef] [PubMed]
  16. Drake AJ, Walker BR. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol 2004 ; 180 : 1–16. [CrossRef] [PubMed]
  17. Anderson LM, Riffle L, Wilson R, et al. Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 2006 ; 22 : 327–331. [CrossRef] [PubMed]
  18. Dunn GA, Bale TL. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 2011 ; 152 : 2228–2236. [CrossRef] [PubMed]
  19. Anway MD, Skinner MK. Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online 2008 ; 16 : 23–25. [CrossRef] [PubMed]
  20. Martinez D, Pentinat T, Ribo S, et al. In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered LXRA DNA methylation. Cell Metab 2014 ; 19 : 941–951. [CrossRef] [PubMed]
  21. Alter MD, Gilani AI, Champagne FA, et al. Paternal transmission of complex phenotypes in inbred mice. Biol Psychiatry 2009 ; 66 : 1061–1066. [CrossRef] [PubMed]
  22. Alminana C, Caballero I, Heath PR, et al. The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics 2014 ; 15 : 293. [CrossRef] [PubMed]
  23. Hackett JA, Surani MA. Beyond DNA: programming and inheritance of parental methylomes. Cell 2013 ; 153 : 737–739. [CrossRef] [PubMed]
  24. Duffie R. Bourc’his D. Parental epigenetic asymmetry in mammals. Curr Top Dev Biol 2013 ; 104 : 293–328. [CrossRef] [PubMed]
  25. Rando OJ. Daddy issues: paternal effects on phenotype. Cell 2012 ; 151 : 702–708. [CrossRef] [PubMed]
  26. Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 2012 ; 13 : 153–162. [CrossRef] [PubMed]
  27. Lim JP, Brunet A. Bridging the transgenerational gap with epigenetic memory. Trends Genet 2013 ; 29 : 176–186. [CrossRef] [PubMed]
  28. Aiken CE, Ozanne SE. Transgenerational developmental programming. Hum Reprod Update 2014 ; 20 : 63–75. [CrossRef] [PubMed]
  29. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 2014 ; 157 : 95–109. [CrossRef] [PubMed]
  30. Drake AJ, Seckl JR. Transmission of programming effects across generations. Pediatr Endocrinol Rev 2011 ; 9 : 566–578. [PubMed]
  31. Gowaty PA, Anderson WW, Bluhm CK, et al. The hypothesis of reproductive compensation and its assumptions about mate preferences and offspring viability. Proc Natl Acad Sci USA 2007 ; 104 : 15023–15027. [CrossRef]
  32. Rassoulzadegan M, Grandjean V, Gounon P, et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 2006 ; 441 : 469–474. [CrossRef] [PubMed]
  33. Weiss IC, Franklin TB, Vizi S, Mansuy IM. Inheritable effect of unpredictable maternal separation on behavioral responses in mice. Front Behav Neurosci 2011 ; 5 : 3. [CrossRef] [PubMed]
  34. Wagner KD, Wagner N, Ghanbarian H, et al. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell 2008 ; 14 : 962–969. [CrossRef] [PubMed]
  35. Cowley M, Oakey RJ. Resetting for the next generation. Mol Cell 2012 ; 48 : 819–821. [CrossRef] [PubMed]
  36. Holland ML, Rakyan VK. Transgenerational inheritance of non-genetically determined phenotypes. Biochem Soc Trans 2013 ; 41 : 769–776. [CrossRef] [PubMed]
  37. Montellier E, Rousseaux S, Kochbin S. Feux croisés sur le nucléosome : bases moléculaires de la compaction du génome mâle haploïde. Med Sci (Paris) 2012 ; 28 : 485–489. [CrossRef] [EDP Sciences] [PubMed]
  38. Morrison KE, Rodgers AB, Morgan CP, Bale TL. Epigenetic mechanisms in pubertal brain maturation. Neuroscience 2014 ; 264 : 17–24. [CrossRef] [PubMed]
  39. Gill ME, Erkek S, Peters AH. Parental epigenetic control of embryogenesis: a balance between inheritance and reprogramming? Curr Opin Cell Biol 2012 ; 24 : 387–396. [CrossRef] [PubMed]
  40. Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002 ; 117 : 15–23. [CrossRef] [PubMed]
  41. Riising EM, Comet I, Leblanc B, et al. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell 2014 ; 55 : 347–360. [CrossRef] [PubMed]
  42. Festenstein R, Chan JP. Context is everything: activators can also repress. Nat Struct Mol Biol 2012 ; 19 : 973–975. [CrossRef] [PubMed]
  43. Brydges NM, Jin R, Seckl J, et al. Juvenile stress enhances anxiety and alters corticosteroid receptor expression in adulthood. Brain Behav 2014 ; 4 : 4–13. [CrossRef] [PubMed]
  44. Hammoud SS, Nix DA, Zhang H, et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009 ; 460 : 473–478. [PubMed]
  45. Saitou M, Kurimoto K. Paternal nucleosomes: are they retained in developmental promoters or gene deserts? Dev Cell 2014 ; 30 : 6–8. [CrossRef] [PubMed]
  46. Smith ZD, Chan MM, Humm KC, et al. DNA methylation dynamics of the human preimplantation embryo. Nature 2014 ; 511 : 611–615. [CrossRef] [PubMed]
  47. Radford EJ, Ito M, Shi H, et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 2014 ; 345 : 1255903. [CrossRef] [PubMed]
  48. King V, Dakin RS, Liu L, et al. Maternal obesity has little effect on the immediate offspring but impacts on the next generation. Endocrinology 2013 ; 154 : 2514–2524. [CrossRef] [PubMed]
  49. Vassoler FM, White SL, Schmidt HD, et al. Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci 2013 ; 16 : 42–47. [CrossRef] [PubMed]
  50. Saab BJ, Mansuy IM. Neuroepigenetics of memory formation and impairment: the role of microRNAs. Neuropharmacology 2014; 80C : 61–69. [CrossRef]
  51. Liu WM, Pang RT, Chiu PC, et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci USA 2012 ; 109 : 490–494. [CrossRef]
  52. Abramowitz LK, Bartolomei MS. Genomic imprinting: recognition and marking of imprinted loci. Curr Opin Genet Dev 2012 ; 22 : 72–78. [CrossRef] [PubMed]
  53. Sharma A. Bioinformatic analysis revealing association of exosomal mRNAs and proteins in epigenetic inheritance. J Theor Biol 2014 ; 357 : 143–149. [CrossRef] [PubMed]
  54. Rechavi O, Minevich G, Hobert O. Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 2011 ; 147 : 1248–1256. [CrossRef] [PubMed]
  55. Bélicard T, Félix MA. Transmission multigénérationnelle de l’interférence à l’ARN chez le nématode Caenorhabditis elegans. Med Sci (Paris) 2012 ; 28 : 574–577. [CrossRef] [EDP Sciences] [PubMed]
  56. Rechavi O. Guest list or black list: heritable small RNAs as immunogenic memories. Trends Cell Biol 2014 ; 24 : 212–220. [CrossRef] [PubMed]
  57. Gabory A, Roseboom TJ, Moore T, et al. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 2013 ; 4 : 5. [CrossRef]
  58. Moisan MP, Le Moal M. Le stress dans tous ses états. Med Sci (Paris) 2012 ; 28 : 612–617. [CrossRef] [EDP Sciences] [PubMed]
  59. Junien C, Panchenko Pirola L, et al. Le nouveau paradigme de l’origine développementale de la santé et des maladies (DOHaD). Épigénétique, environnement : preuves et chaînons manquants. Med Sci (Paris) 2016 ; 32 : 27–34. [CrossRef] [EDP Sciences] [PubMed]
  60. Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 2013 ; 20 : 282–289. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.