Free Access
Issue
Med Sci (Paris)
Volume 32, Number 1, Janvier 2016
Origine développementale de la santé et des maladies (DOHaD), environnement et épigénétique
Page(s) 35 - 44
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163201007
Published online 05 February 2016
  1. Almond D, Currie J. Killing me softly: the fetal origins hypothesis. J Econ Perspect 2011 ; 25 : 153–172. [CrossRef] [PubMed] [Google Scholar]
  2. Yan W. Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Mol Cell Endocrinol 2014 ; 398 : 24–30. [CrossRef] [PubMed] [Google Scholar]
  3. Grossniklaus U, Kelly WG, Ferguson-Smith AC, et al. Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 2013 ; 14 : 228–235. [CrossRef] [PubMed] [Google Scholar]
  4. Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 2014 ; 17 : 667–669. [CrossRef] [PubMed] [Google Scholar]
  5. Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 2002 ; 10 : 682–688. [CrossRef] [PubMed] [Google Scholar]
  6. Attig L, Vige A, Gabory A, et al. Dietary alleviation of maternal obesity and diabetes: increased resistance to diet-induced obesity transcriptional and epigenetic signatures. PLoS One 2013 ; 8 : e66816. [CrossRef] [PubMed] [Google Scholar]
  7. Arai JA, Feig LA. Long-lasting and transgenerational effects of an environmental enrichment on memory formation. Brain Res Bull 2011 ; 85 : 30–35. [CrossRef] [PubMed] [Google Scholar]
  8. Junien C. L’empreinte parentale : de la guerre des sexes à la solidarité entre générations. Med Sci (Paris) 2000 ; 3 : 336–344. [CrossRef] [Google Scholar]
  9. Bromfield JJ, Schjenken JE, Chin PY, et al. Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc Natl Acad Sci USA 2014 ; 111 : 2200–2205. [CrossRef] [Google Scholar]
  10. Curley JP, Mashoodh R, Champagne FA. Epigenetics and the origins of paternal effects. Horm Behav 2011 ; 59 : 306–314. [CrossRef] [PubMed] [Google Scholar]
  11. Junien C, Gabory A, Attig L. Le dimorphisme sexuel au XXIe siècle. Med Sci (Paris) 2012 ; 28 : 185–192. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Pembrey M, Saffery R, Bygren LO. Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J Med Genet 2014 ; 51 : 563–572. [CrossRef] [PubMed] [Google Scholar]
  13. Lane M, Robker RL, Robertson SA. Parenting from before conception. Science 2014 ; 345 : 756–760. [CrossRef] [PubMed] [Google Scholar]
  14. Dunn GA, Morgan CP, Bale TL. Sex-specificity in transgenerational epigenetic programming. Horm Behav 2010 ; 59 : 290–295. [CrossRef] [PubMed] [Google Scholar]
  15. Sugathan A, Waxman DJ. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol 2013 ; 33 : 3594–3610. [CrossRef] [PubMed] [Google Scholar]
  16. Drake AJ, Walker BR. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol 2004 ; 180 : 1–16. [CrossRef] [PubMed] [Google Scholar]
  17. Anderson LM, Riffle L, Wilson R, et al. Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 2006 ; 22 : 327–331. [CrossRef] [PubMed] [Google Scholar]
  18. Dunn GA, Bale TL. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 2011 ; 152 : 2228–2236. [CrossRef] [PubMed] [Google Scholar]
  19. Anway MD, Skinner MK. Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online 2008 ; 16 : 23–25. [CrossRef] [PubMed] [Google Scholar]
  20. Martinez D, Pentinat T, Ribo S, et al. In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered LXRA DNA methylation. Cell Metab 2014 ; 19 : 941–951. [CrossRef] [PubMed] [Google Scholar]
  21. Alter MD, Gilani AI, Champagne FA, et al. Paternal transmission of complex phenotypes in inbred mice. Biol Psychiatry 2009 ; 66 : 1061–1066. [CrossRef] [PubMed] [Google Scholar]
  22. Alminana C, Caballero I, Heath PR, et al. The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics 2014 ; 15 : 293. [CrossRef] [PubMed] [Google Scholar]
  23. Hackett JA, Surani MA. Beyond DNA: programming and inheritance of parental methylomes. Cell 2013 ; 153 : 737–739. [CrossRef] [PubMed] [Google Scholar]
  24. Duffie R. Bourc’his D. Parental epigenetic asymmetry in mammals. Curr Top Dev Biol 2013 ; 104 : 293–328. [CrossRef] [PubMed] [Google Scholar]
  25. Rando OJ. Daddy issues: paternal effects on phenotype. Cell 2012 ; 151 : 702–708. [CrossRef] [PubMed] [Google Scholar]
  26. Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 2012 ; 13 : 153–162. [CrossRef] [PubMed] [Google Scholar]
  27. Lim JP, Brunet A. Bridging the transgenerational gap with epigenetic memory. Trends Genet 2013 ; 29 : 176–186. [CrossRef] [PubMed] [Google Scholar]
  28. Aiken CE, Ozanne SE. Transgenerational developmental programming. Hum Reprod Update 2014 ; 20 : 63–75. [CrossRef] [PubMed] [Google Scholar]
  29. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 2014 ; 157 : 95–109. [CrossRef] [PubMed] [Google Scholar]
  30. Drake AJ, Seckl JR. Transmission of programming effects across generations. Pediatr Endocrinol Rev 2011 ; 9 : 566–578. [PubMed] [Google Scholar]
  31. Gowaty PA, Anderson WW, Bluhm CK, et al. The hypothesis of reproductive compensation and its assumptions about mate preferences and offspring viability. Proc Natl Acad Sci USA 2007 ; 104 : 15023–15027. [CrossRef] [Google Scholar]
  32. Rassoulzadegan M, Grandjean V, Gounon P, et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 2006 ; 441 : 469–474. [CrossRef] [PubMed] [Google Scholar]
  33. Weiss IC, Franklin TB, Vizi S, Mansuy IM. Inheritable effect of unpredictable maternal separation on behavioral responses in mice. Front Behav Neurosci 2011 ; 5 : 3. [CrossRef] [PubMed] [Google Scholar]
  34. Wagner KD, Wagner N, Ghanbarian H, et al. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell 2008 ; 14 : 962–969. [CrossRef] [PubMed] [Google Scholar]
  35. Cowley M, Oakey RJ. Resetting for the next generation. Mol Cell 2012 ; 48 : 819–821. [CrossRef] [PubMed] [Google Scholar]
  36. Holland ML, Rakyan VK. Transgenerational inheritance of non-genetically determined phenotypes. Biochem Soc Trans 2013 ; 41 : 769–776. [CrossRef] [PubMed] [Google Scholar]
  37. Montellier E, Rousseaux S, Kochbin S. Feux croisés sur le nucléosome : bases moléculaires de la compaction du génome mâle haploïde. Med Sci (Paris) 2012 ; 28 : 485–489. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Morrison KE, Rodgers AB, Morgan CP, Bale TL. Epigenetic mechanisms in pubertal brain maturation. Neuroscience 2014 ; 264 : 17–24. [CrossRef] [PubMed] [Google Scholar]
  39. Gill ME, Erkek S, Peters AH. Parental epigenetic control of embryogenesis: a balance between inheritance and reprogramming? Curr Opin Cell Biol 2012 ; 24 : 387–396. [CrossRef] [PubMed] [Google Scholar]
  40. Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002 ; 117 : 15–23. [CrossRef] [PubMed] [Google Scholar]
  41. Riising EM, Comet I, Leblanc B, et al. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell 2014 ; 55 : 347–360. [CrossRef] [PubMed] [Google Scholar]
  42. Festenstein R, Chan JP. Context is everything: activators can also repress. Nat Struct Mol Biol 2012 ; 19 : 973–975. [CrossRef] [PubMed] [Google Scholar]
  43. Brydges NM, Jin R, Seckl J, et al. Juvenile stress enhances anxiety and alters corticosteroid receptor expression in adulthood. Brain Behav 2014 ; 4 : 4–13. [CrossRef] [PubMed] [Google Scholar]
  44. Hammoud SS, Nix DA, Zhang H, et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009 ; 460 : 473–478. [CrossRef] [PubMed] [Google Scholar]
  45. Saitou M, Kurimoto K. Paternal nucleosomes: are they retained in developmental promoters or gene deserts? Dev Cell 2014 ; 30 : 6–8. [CrossRef] [PubMed] [Google Scholar]
  46. Smith ZD, Chan MM, Humm KC, et al. DNA methylation dynamics of the human preimplantation embryo. Nature 2014 ; 511 : 611–615. [CrossRef] [PubMed] [Google Scholar]
  47. Radford EJ, Ito M, Shi H, et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 2014 ; 345 : 1255903. [CrossRef] [PubMed] [Google Scholar]
  48. King V, Dakin RS, Liu L, et al. Maternal obesity has little effect on the immediate offspring but impacts on the next generation. Endocrinology 2013 ; 154 : 2514–2524. [CrossRef] [PubMed] [Google Scholar]
  49. Vassoler FM, White SL, Schmidt HD, et al. Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci 2013 ; 16 : 42–47. [CrossRef] [PubMed] [Google Scholar]
  50. Saab BJ, Mansuy IM. Neuroepigenetics of memory formation and impairment: the role of microRNAs. Neuropharmacology 2014; 80C : 61–69. [CrossRef] [Google Scholar]
  51. Liu WM, Pang RT, Chiu PC, et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci USA 2012 ; 109 : 490–494. [CrossRef] [Google Scholar]
  52. Abramowitz LK, Bartolomei MS. Genomic imprinting: recognition and marking of imprinted loci. Curr Opin Genet Dev 2012 ; 22 : 72–78. [CrossRef] [PubMed] [Google Scholar]
  53. Sharma A. Bioinformatic analysis revealing association of exosomal mRNAs and proteins in epigenetic inheritance. J Theor Biol 2014 ; 357 : 143–149. [CrossRef] [PubMed] [Google Scholar]
  54. Rechavi O, Minevich G, Hobert O. Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 2011 ; 147 : 1248–1256. [CrossRef] [PubMed] [Google Scholar]
  55. Bélicard T, Félix MA. Transmission multigénérationnelle de l’interférence à l’ARN chez le nématode Caenorhabditis elegans. Med Sci (Paris) 2012 ; 28 : 574–577. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  56. Rechavi O. Guest list or black list: heritable small RNAs as immunogenic memories. Trends Cell Biol 2014 ; 24 : 212–220. [CrossRef] [PubMed] [Google Scholar]
  57. Gabory A, Roseboom TJ, Moore T, et al. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 2013 ; 4 : 5. [CrossRef] [PubMed] [Google Scholar]
  58. Moisan MP, Le Moal M. Le stress dans tous ses états. Med Sci (Paris) 2012 ; 28 : 612–617. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  59. Junien C, Panchenko Pirola L, et al. Le nouveau paradigme de l’origine développementale de la santé et des maladies (DOHaD). Épigénétique, environnement : preuves et chaînons manquants. Med Sci (Paris) 2016 ; 32 : 27–34. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  60. Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 2013 ; 20 : 282–289. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.