Free Access
Med Sci (Paris)
Volume 31, Number 12, Décembre 2015
Page(s) 1083 - 1091
Section M/S Revues
Published online 16 December 2015
  1. Rossouw JE, Prentice RL, Manson JE, et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA 2007 ; 297 : 1465–1477. [CrossRef] [PubMed] [Google Scholar]
  2. Lenfant F, Tremollieres F, Gourdy P, Arnal JF. Timing of the vascular actions of estrogens in experimental and human studies: why protective early, and not when delayed? Maturitas 2011 ; 68 : 165–173. [CrossRef] [PubMed] [Google Scholar]
  3. McDonnell DP, Wardell SE. The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Curr Opin Pharmacol 2010 ; 10 : 620–628. [CrossRef] [PubMed] [Google Scholar]
  4. Palmieri C, Patten DK, Januszewski A, et al. Breast cancer: current and future endocrine therapies. Mol Cell Endocrinol 2014 ; 382 : 695–723. [CrossRef] [PubMed] [Google Scholar]
  5. Jiang Q, Zheng S, Wang G. Development of new estrogen receptor-targeting therapeutic agents for tamoxifen-resistant breast cancer. Future Med Chem 2013 ; 5 : 1023–1035. [CrossRef] [PubMed] [Google Scholar]
  6. Heldring N, Pike A, Andersson S, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev 2007 ; 87 : 905–931. [CrossRef] [PubMed] [Google Scholar]
  7. Lonard DM, O’Malley BW. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat Rev Endocrinol 2012 ; 8 : 598–604. [CrossRef] [PubMed] [Google Scholar]
  8. Kobayashi Y, Kitamoto T, Masuhiro Y, et al. p300 mediates functional synergism between AF-1 and AF-2 of estrogen receptor alpha and beta by interacting directly with the N-terminal A/B domains. J Biol Chem 2000 ; 275 : 15645–15651. [CrossRef] [PubMed] [Google Scholar]
  9. Metivier R, Penot G, Flouriot G, Pakdel F. Synergism between ERalpha transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: requirement for the AF-1 alpha-helical core and for a direct interaction between the N- and C-terminal domains. Mol Endocrinol 2001 ; 15 : 1953–1970. [PubMed] [Google Scholar]
  10. Onate SA, Boonyaratanakornkit V, Spencer TE, et al. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem 1998 ; 273 : 12101–12108. [CrossRef] [PubMed] [Google Scholar]
  11. Benecke A, Chambon P, Gronemeyer H. Synergy between estrogen receptor α activation functions AF1 and AF2 mediated by transcription intermediary factor TIF2. EMBO Rep 2000 ; 1 : 151–157. [CrossRef] [PubMed] [Google Scholar]
  12. Tzukerman MT, Esty A, Santiso-Mere D, et al. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol 1994 ; 8 : 21–30. [PubMed] [Google Scholar]
  13. Metivier R, Stark A, Flouriot G, et al. A dynamic structural model for estrogen receptor-alpha activation by ligands, emphasizing the role of interactions between distant A and E domains. Mol Cell 2002 ; 10 : 1019–1032. [CrossRef] [PubMed] [Google Scholar]
  14. Katzenellenbogen BS, Katzenellenbogen JA. Biomedicine. Defining the S in SERMs. Science 2002 ; 295 : 2380–2381. [Google Scholar]
  15. Billon-Gales A, Krust A, Fontaine C, et al. Activation function 2 (AF2) of estrogen receptor-[alpha] is required for the atheroprotective action of estradiol but not to accelerate endothelial healing. Proc Natl Acad Sci USA 2011 ; 108 : 13311–13316. [CrossRef] [Google Scholar]
  16. Billon-Gales A, Fontaine C, Filipe C, et al. The transactivating function 1 of estrogen receptor[alpha] is dispensable for the vasculoprotective actions of 17[beta]-estradiol. Proc Natl Acad Sci USA 2009 ; 106 : 2053–2058. [CrossRef] [Google Scholar]
  17. Adlanmerini M, Solinhac R, Abot A, et al. Mutation of the palmitoylation site of estrogen receptor alpha in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc Natl Acad Sci USA 2014 ; 111 : E283–E290. [CrossRef] [Google Scholar]
  18. Handgraaf S, Riant E, Fabre A, et al. Prevention of obesity and insulin resistance by estrogens requires ERalpha activation function-2 (ERalphaAF-2), whereas ERalphaAF-1 is dispensable. Diabetes 2013 ; 62 : 4098–4108. [CrossRef] [PubMed] [Google Scholar]
  19. Arao Y, Hamilton KJ, Ray MK, et al. Estrogen receptor alpha AF-2 mutation results in antagonist reversal and reveals tissue selective function of estrogen receptor modulators. Proc Natl Acad Sci USA 2011 ; 108 : 14986–14991. [CrossRef] [Google Scholar]
  20. Wu Q, Chambliss K, Umetani M, et al. Non-nuclear estrogen receptor signaling in the endothelium. J Biol Chem 2011 ; 286 : 14737–14743. [CrossRef] [PubMed] [Google Scholar]
  21. Brouchet L, Krust A, Dupont S, et al. Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-alpha but not estrogen receptor-beta. Circulation 2001 ; 103 : 423–428. [CrossRef] [PubMed] [Google Scholar]
  22. Darblade B, Pendaries C, Krust A, et al. Estradiol alters nitric oxide production in the mouse aorta through the alpha-, but not beta-, estrogen receptor. Circ Res 2002 ; 90 : 413–419. [CrossRef] [Google Scholar]
  23. Russell KS, Haynes MP, Sinha D, et al. Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. Proc Natl Acad Sci USA 2000 ; 97 : 5930–5935. [CrossRef] [Google Scholar]
  24. Kim KH, Toomre D, Bender JR. Splice isoform estrogen receptors as integral transmembrane proteins. Mol Biol Cell 2011 ; 22 : 4415–4423. [CrossRef] [PubMed] [Google Scholar]
  25. Kim KH, Bender JR. Membrane-initiated actions of estrogen on the endothelium. Mol Cell Endocrinol 2009 ; 308 : 3–8. [CrossRef] [PubMed] [Google Scholar]
  26. Chaudhri RA, Hadadi A, Lobachev KS, et al. Estrogen receptor-alpha 36 mediates the anti-apoptotic effect of estradiol in triple negative breast cancer cells via a membrane-associated mechanism. Biochim Biophys Acta 2014 ; 1843 : 2796–2806. [CrossRef] [PubMed] [Google Scholar]
  27. Acconcia F, Ascenzi P, Bocedi A, et al. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell 2005 ; 16 : 231–237. [CrossRef] [PubMed] [Google Scholar]
  28. Acconcia F, Ascenzi P, Fabozzi G, et al. S-palmitoylation modulates human estrogen receptor-alpha functions. Biochem Biophys Res Commun 2004 ; 316 : 878–883. [CrossRef] [PubMed] [Google Scholar]
  29. Migliaccio A, Castoria G, Di Domenico M, et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 2000 ; 19 : 5406–5417. [CrossRef] [PubMed] [Google Scholar]
  30. Li L, Hisamoto K, Kim KH, et al. Variant estrogen receptor-c-Src molecular interdependence and c-Src structural requirements for endothelial NO synthase activation. Proc Natl Acad Sci USA 2007 ; 104 : 16468–16473. [CrossRef] [Google Scholar]
  31. Le Romancer M, Treilleux I, Leconte N, et al. Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol Cell 2008 ; 31 : 212–221. [CrossRef] [PubMed] [Google Scholar]
  32. Wu Q, Chambliss K, Lee WR, et al. Point mutations in the ERalpha Galphai binding domain segregate nonnuclear from nuclear receptor function. Mol Endocrinol 2013 ; 27 : 2–11. [CrossRef] [PubMed] [Google Scholar]
  33. Marino M, Ascenzi P. Membrane association of estrogen receptor alpha and beta influences 17beta-estradiol-mediated cancer cell proliferation. Steroids 2008 ; 73 : 853–858. [CrossRef] [PubMed] [Google Scholar]
  34. La Rosa P, Pesiri V, Leclercq G, et al. Palmitoylation regulates 17beta-estradiol-induced estrogen receptor-alpha degradation and transcriptional activity. Mol Endocrinol 2012 ; 26 : 762–774. [CrossRef] [PubMed] [Google Scholar]
  35. Chambliss KL, Simon L, Yuhanna IS, et al. Dissecting the basis of nongenomic activation of endothelial nitric oxide synthase by estradiol: role of ERalpha domains with known nuclear functions. Mol Endocrinol 2005 ; 19 : 277–289. [CrossRef] [PubMed] [Google Scholar]
  36. Razandi M, Pedram A, Merchenthaler I, et al. Plasma membrane estrogen receptors exist and functions as dimers. Mol Endocrinol 2004 ; 18 : 2854–2865. [CrossRef] [PubMed] [Google Scholar]
  37. Wendler A, Baldi E, Harvey BJ, et al. Position paper: rapid responses to steroids. Current status and future prospects. Eur J Endocrinol 2010 ; 162 : 825–830. [CrossRef] [PubMed] [Google Scholar]
  38. Lin AHY, Li RWS, Ho EYW, et al. Differential ligand binding affinities of human estrogen receptor-α isoforms. PLoS One 2013 ; 8 : e63199. [CrossRef] [PubMed] [Google Scholar]
  39. Harrington WR, Kim SH, Funk CC, et al. Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic versus genomic pathways of estrogen action. Mol Endocrinol 2006 ; 20 : 491–502. [CrossRef] [PubMed] [Google Scholar]
  40. Chambliss KL, Wu Q, Oltmann S, et al. Non-nuclear estrogen receptor alpha signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. J Clin Invest 2010 ; 120 : 2319–2330. [CrossRef] [PubMed] [Google Scholar]
  41. Li L, Haynes MP, Bender JR. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc Natl Acad Sci USA 2003 ; 100 : 4807–4812. [CrossRef] [Google Scholar]
  42. Pedram A, Razandi M, Lewis M, et al. Membrane-localized estrogen receptor a is required for normal organ development and function. Dev Cell 2014 ; 29 : 482–490. [CrossRef] [PubMed] [Google Scholar]
  43. Smith CL, O’Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 2004 ; 25 : 45–71. [CrossRef] [PubMed] [Google Scholar]
  44. Fontaine C, Abot A, Billon-Gales A, et al. Tamoxifen elicits atheroprotection through estrogen receptor alpha AF-1 but does not accelerate reendothelialization. Am J Pathol 2013 ; 183 : 304–312. [CrossRef] [PubMed] [Google Scholar]
  45. Madak-Erdogan Z, Kieser KJ, Kim SH, et al. Nuclear and extranuclear pathway inputs in the regulation of global gene expression by estrogen receptors. Mol Endocrinol 2008 ; 22 : 2116–2127. [CrossRef] [PubMed] [Google Scholar]
  46. Visser M, Foidart JM. Coelingh Bennink HJ. In vitro effects of estetrol on receptor binding, drug targets and human liver cell metabolism. Climacteric 2008 ; 11 (suppl 1) : 64–68. [CrossRef] [PubMed] [Google Scholar]
  47. Abot A, Fontaine C, Buscato M, et al. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor alpha modulation, uncoupling nuclear and membrane activation. EMBO Mol Med 2014 ; 10 : 1328–1346. [CrossRef] [PubMed] [Google Scholar]
  48. Canonico M, Plu-Bureau G, Lowe GD, Scarabin PY. Hormone replacement therapy and risk of venous thromboembolism in postmenopausal women: systematic review and meta-analysis. BMJ 2008 ; 336 : 1227–1231. [CrossRef] [PubMed] [Google Scholar]
  49. Brouchet L, Krust A, Dupont S, et al. Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-alpha but not estrogen receptor-beta. Circulation 2001 ; 103 : 423–428. [CrossRef] [PubMed] [Google Scholar]
  50. Mawet M, Maillard C, Klipping C, et al. Unique effects on hepatic function, lipid metabolism, bone and growth endocrine parameters of estetrol in combined oral contraceptives. Eur J Contracept Reprod Health Care 2015 ; 20 : 463–475. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.