Free Access
Issue
Med Sci (Paris)
Volume 31, Number 12, Décembre 2015
Page(s) 1092 - 1101
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153112012
Published online 16 December 2015
  1. Clayton F, Snow G, Reka S, Kotler DP. Selective depletion of rectal lamina propria rather than lymphoid aggregate CD4 lymphocytes in HIV infection. Clin Exp Immunol 1997; 107 : 288–292. [CrossRef] [PubMed] [Google Scholar]
  2. Sáez-Cirión A, Bacchus C, Hocqueloux L, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy Anrs Visconti study. PLoS Pathog 2013 ; 9 : e1003211. [CrossRef] [PubMed] [Google Scholar]
  3. Brenchley JM, Price DA, Douek DC. HIV disease: fallout from a mucosal catastrophe? Nat Immunol 2006 ; 7 : 235–239. [CrossRef] [PubMed] [Google Scholar]
  4. Cerf-Bensussan N, Guy-Grand D. Intestinal intraepithelial lymphocytes. Gastroenterol Clin North Am 1991 ; 20 : 549–576. [PubMed] [Google Scholar]
  5. Brenchley JM, Schacker TW, Ruff LE, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 2004 ; 200 : 749–759. [CrossRef] [PubMed] [Google Scholar]
  6. Yukl SA, Shergill A, Ho T, et al. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV+ patients on ART: implications for viral persistence. J Infect Dis 2013 ; 208 : 1212–1220. [CrossRef] [PubMed] [Google Scholar]
  7. Guadalupe M, Reay E, Sankaran S, et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 2003 ; 77 : 11708–11717. [CrossRef] [PubMed] [Google Scholar]
  8. Chun TW, Nickle DC, Justement JS, et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis 2008 ; 197 : 714–720. [CrossRef] [PubMed] [Google Scholar]
  9. Yukl S, Gianella S, Sinclair E, et al. Differences in HIV burden and immune activation within the gut of HIV+ patients on suppressive antiretroviral therapy. J Infect Dis 2010 ; 202 : 1553–1561. [CrossRef] [PubMed] [Google Scholar]
  10. Lewin SR, Rouzioux C. HIV cure and eradication: how will we get from the laboratory to effective clinical trials? AIDS 2011 ; 25 : 885–897. [CrossRef] [PubMed] [Google Scholar]
  11. Chomont N, El-Far M, Ancuta P, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 2009 ; 15 : 893–900. [CrossRef] [PubMed] [Google Scholar]
  12. Katlama C, Deeks SG, Autran B, et al. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet 2013 ; 381 : 2109–2117. [CrossRef] [PubMed] [Google Scholar]
  13. Rouzioux C, Richman D. How to best measure HIV reservoirs? Curr Opin HIV AIDS 2013 ; 8 : 170–175. [CrossRef] [PubMed] [Google Scholar]
  14. Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci USA 2014 ; 111 : 2307–2312. [CrossRef] [PubMed] [Google Scholar]
  15. Poles MA, Boscardin WJ, Elliott J, et al. Lack of decay of HIV-1 in gut-associated lymphoid tissue reservoirs in maximally suppressed individuals. J Acquir Immune Defic Syndr 2006 ; 43 : 65–68. [CrossRef] [PubMed] [Google Scholar]
  16. Yukl SA, Shergill AK, McQuaid K, et al. Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. AIDS 2010 ; 24 : 2451–2460. [CrossRef] [PubMed] [Google Scholar]
  17. Josefsson L, von Stockenstrom S, Faria NR, et al. The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc Natl Acad Sci USA 2013 ; 110 : E4987–E4996. [CrossRef] [Google Scholar]
  18. Arthos J, Cicala C, Martinelli E, et al. HIV-1 envelope protein binds to and signals through integrin α4β7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol 2008 ; 9 : 301–309. [CrossRef] [PubMed] [Google Scholar]
  19. Gorfu G, Rivera-Nieves J, Ley K. Role of beta7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med 2009 ; 9 : 836–850. [CrossRef] [PubMed] [Google Scholar]
  20. Anjuère F, Czerkinsky C. Immunité muqueuse et vaccination. Med Sci (Paris) 2007 ; 23 : 371–378. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  21. Hunt PW. Th17, gut, and HIV: therapeutic implications. Curr Opin HIV AIDS 2010 ; 5 : 189–193. [CrossRef] [PubMed] [Google Scholar]
  22. Dandekar S, George MD, Bäumler AJ. Th17 cells, HIV and the gut mucosal barrier. Curr Opin HIV AIDS 2010 ; 5 : 173–178. [CrossRef] [PubMed] [Google Scholar]
  23. Gosselin A, Monteiro P, Chomont N, et al. Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. J Immunol 2010 ; 184 : 1604–1616. [CrossRef] [PubMed] [Google Scholar]
  24. Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev 2013 ; 26 : 2–18. [CrossRef] [PubMed] [Google Scholar]
  25. Rueda CM, Velilla PA, Chougnet CA, et al. HIV-induced T-cell activation/exhaustion in rectal mucosa is controlled only partially by antiretroviral treatment. PloS One 2012 ; 7 : e30307. [CrossRef] [PubMed] [Google Scholar]
  26. Shaw JM, Hunt PW, Critchfield JW, et al. Increased frequency of regulatory T cells accompanies increased immune activation in rectal mucosae of HIV-positive noncontrollers. J Virol 2011 ; 85 : 11422–11434. [CrossRef] [PubMed] [Google Scholar]
  27. Costiniuk CT, Angel JB. Human immunodeficiency virus and the gastrointestinal immune system: does highly active antiretroviral therapy restore gut immunity? Mucosal Immunol 2012 ; 5 : 596–604. [CrossRef] [PubMed] [Google Scholar]
  28. Sandler NG, Douek DC. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat Rev Microbiol 2012 ; 10 : 655–666. [CrossRef] [PubMed] [Google Scholar]
  29. Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV Infection. Immunity 2013 ; 39 : 633–645. [CrossRef] [PubMed] [Google Scholar]
  30. Morlat P (dir). Prise en charge médicale des personnes vivant avec le VIH-Recommandations du groupe d’experts. Rapport 2013 sous la direction du Pr Philippe Morlat et sous l’égide du CNS et de l’ANRS. Paris : La Documentation Française, 2013. [Google Scholar]
  31. Hocqueloux L, Avettand-Fènoël V, Jacquot S, et al. Long-term antiretroviral therapy initiated during primary HIV-1 infection is key to achieving both low HIV reservoirs and normal T cell counts. J Antimicrob Chemother 2013 ; 68 : 1169–1178. [CrossRef] [PubMed] [Google Scholar]
  32. Cellerai C, Harari A, Stauss H, et al. Early and prolonged antiretroviral therapy is associated with an HIV-1-specific T-cell profile comparable to that of long-term non-progressors. PloS One 2011 ; 6 : e18164. [CrossRef] [PubMed] [Google Scholar]
  33. Hocqueloux L, Prazuck T, Avettand-Fenoel V, et al. Long-term immunovirologic control following antiretroviral therapy interruption in patients treated at the time of primary HIV-1 infection. AIDS Lond Engl 2010 ; 24 : 1598–1601. [CrossRef] [Google Scholar]
  34. Thompson CG, Cohen MS, Kashuba A. Antiretroviral pharmacology in mucosal tissues. J Acquir Immune Defic Syndr 2013 ; 63 : S240–S247. [CrossRef] [PubMed] [Google Scholar]
  35. Nicol MR, Kashuba ADM. Pharmacologic opportunities for HIV prevention. Clin Pharmacol Ther 2010 ; 88 : 598–609. [CrossRef] [PubMed] [Google Scholar]
  36. Cory TJ, Schacker TW, Stevenson M, Fletcher CV. Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS 2013 ; 8 : 190–195. [CrossRef] [PubMed] [Google Scholar]
  37. Ananworanich J, Schuetz A, Vandergeeten C, et al. Impact of multi-targeted antiretroviral treatment on gut T cell depletion and HIV reservoir seeding during acute HIV infection. PLoS One 2012 ; 7 : e33948. [CrossRef] [PubMed] [Google Scholar]
  38. Guadalupe M, Sankaran S, George MD, et al. Viral suppression and immune restoration in the gastrointestinal mucosa of human immunodeficiency virus type 1-infected patients initiating therapy during primary or chronic infection. J Virol 2006 ; 80 : 8236–8247. [CrossRef] [PubMed] [Google Scholar]
  39. Tincati C, Biasin M, Bandera A, et al. Early initiation of highly active antiretroviral therapy fails to reverse immunovirological abnormalities in gut-associated lymphoid tissue induced by acute HIV infection. Antivir Ther 2009 ; 14 : 321–330. [PubMed] [Google Scholar]
  40. Koelsch KK, Boesecke C, McBride K, et al. Impact of treatment with raltegravir during primary or chronic HIV infection on RNA decay characteristics and the HIV viral reservoir. AIDS Lond Engl 2011 ; 25 : 2069–2078. [CrossRef] [Google Scholar]
  41. Evering TH, Mehandru S, Racz P, et al. Absence of HIV-1 evolution in the gut-associated lymphoid tissue from patients on combination antiviral therapy initiated during primary infection. PLoS Pathog 2012 ; 8 : e1002506. [CrossRef] [PubMed] [Google Scholar]
  42. Buzon MJ, Martin-Gayo E, Pereyra F, et al. Long-term antiretroviral treatment initiated in primary HIV-1 infection affects the size, composition and decay kinetics of the reservoir of HIV-1 infected CD4 T cells. J Virol 2014 ; 88 : 10056–10065. [CrossRef] [PubMed] [Google Scholar]
  43. Martinez V, Autran B. Les HIV controllers : une nouvelle entité évolutive de l’infection par le VIH ? Med Sci (Paris) 2008 ; 24 : 7–9. [CrossRef] [EDP Sciences] [Google Scholar]
  44. Hatano H, Somsouk M, Sinclair E, et al. Comparison of HIV DNA and RNA in gut-associated lymphoid tissue of HIV-infected controllers and noncontrollers. AIDS Lond Engl 2013 ; 27 : 2255–2260. [CrossRef] [Google Scholar]
  45. Shacklett BL, Ferre AL. Mucosal immunity in HIV controllers: the right place at the right time. Curr Opin HIV AIDS 2011 ; 6 : 202–207. [CrossRef] [PubMed] [Google Scholar]
  46. Zeng M, Haase AT, Schacker TW. Lymphoid tissue structure and HIV-1 infection: life or death for T cells. Trends Immunol 2012 ; 33 : 306–314. [CrossRef] [PubMed] [Google Scholar]
  47. Kök A, Hocqueloux L, Hocini H, et al. Early initiation of combined antiretroviral therapy preserves immune function in the gut of HIV-infected patients. Mucosal Immunol 2014 ; 8 : 127–140. [PubMed] [Google Scholar]
  48. Sereti I, Estes JD, Thompson WL, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog 2014 ; 10 : e1003890. [CrossRef] [PubMed] [Google Scholar]
  49. Estes JD, Reilly C, Trubey CM, et al. Antifibrotic therapy in SIV infection preserves CD4 T cell populations and improves immune reconstitution with antiretroviral therapy. J Infect Dis 2015 ; 211 : 744–754. [CrossRef] [PubMed] [Google Scholar]
  50. Fuller DH, Rajakumar P, Che JW, et al. Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques. PLoS One 2012 ; 7 : e33715. [CrossRef] [PubMed] [Google Scholar]
  51. Dyavar Shetty R, Velu V, Titanji K, et al. PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques. J Clin Invest 2012; 122 : 1712–1716. [CrossRef] [PubMed] [Google Scholar]
  52. Gori A, Rizzardini G, Van’t Land B, et al. Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the COPA pilot randomized trial. Mucosal Immunol 2011 ; 4 : 554–563. [CrossRef] [PubMed] [Google Scholar]
  53. Sandler NG, Zhang X, Bosch RJ, et al. Sevelamer does not decrease lipopolysaccharide or soluble CD14 levels but decreases soluble tissue factor, low-density lipoprotein (LDL) cholesterol, and oxidized LDL cholesterol levels in individuals with untreated HIV infection. J Infect Dis 2014 ; 210 : 1549–1554. [CrossRef] [PubMed] [Google Scholar]
  54. Asmuth DM, Ma ZM, Albanese A, et al. Oral serum-derived bovine immunoglobulin improves duodenal immune reconstitution and absorption function in patients with HIV enteropathy. AIDS 2013 ; 27 : 2207–2217. [CrossRef] [PubMed] [Google Scholar]
  55. Hatano H, Hayes TL, Dahl V, et al. A randomized, controlled trial of raltegravir intensification in antiretroviral-treated, HIV-infected patients with a suboptimal CD4+ T cell response. J Infect Dis 2011 ; 203 : 960–968. [CrossRef] [PubMed] [Google Scholar]
  56. Chege D, Kovacs C, la Porte C, et al. Effect of raltegravir intensification on HIV proviral DNA in the blood and gut mucosa of men on long-term therapy: a randomized controlled trial. AIDS 2012 ; 26 : 167–174. [CrossRef] [PubMed] [Google Scholar]
  57. Assimakopoulos SF, Dimitropoulou D, Marangos M, Gogos CA. Intestinal barrier dysfunction in HIV infection: pathophysiology, clinical implications and potential therapies. Infection 2014 ; 42 : 951–959. [CrossRef] [PubMed] [Google Scholar]
  58. Leite RD, Lima NL, Leite CAC, et al. Improvement of intestinal permeability with alanyl-glutamine in HIV patients: a randomized, double blinded, placebo-controlled clinical trial. Arq Gastroenterol 2013 ; 50 : 56–63. [CrossRef] [PubMed] [Google Scholar]
  59. Sinha B, Rubens M. Systemic immune activation in HIV and potential therapeutic options. Immunopharmacol Immunotoxicol 2014 ; 36 : 89–95. [CrossRef] [PubMed] [Google Scholar]
  60. González-Hernández LA, Jave-Suarez LF, Fafutis-Morris M, et al. Synbiotic therapy decreases microbial translocation and inflammation and improves immunological status in HIV-infected patients: a double-blind randomized controlled pilot trial. Nutr J 2012 ; 11 : 90. [CrossRef] [PubMed] [Google Scholar]
  61. Vivier E, Spits H, Cupedo T. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? Nat Rev Immunol 2009 ; 9 : 229–234. [CrossRef] [PubMed] [Google Scholar]
  62. Girard A, Roblin X, Genin C, Paul S. Rôle et ciblage de l’intégrine a4b7 dans la physiopathologie des MICI et de l’infection par le VIH. Med Sci (Paris) 2015 ; 31 : 895–903. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.