Free Access
Med Sci (Paris)
Volume 31, Number 1, Janvier 2015
Page(s) 84 - 92
Section M/S Revues
Published online 06 February 2015
  1. Sawyers CL. The cancer biomarker problem. Nature 2008 ; 452 : 548–552. [CrossRef] [PubMed] [Google Scholar]
  2. Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 1998 ; 24 : 954–962. [PubMed] [Google Scholar]
  3. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5’-3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 1991 ; 88 : 7276–7280. [Google Scholar]
  4. Thierry AR, Mouliere F, El Messaoudi S, et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 2014 ; 20 : 430–435. [CrossRef] [PubMed] [Google Scholar]
  5. Sykes PJ, Neoh SH, Brisco MJ, et al. Quantitation of targets for PCR by use of limiting dilution. Biotechniques 1992 ; 13 : 444–449. [PubMed] [Google Scholar]
  6. Vogelstein B, Kinzler KW, Digital PCR. Proc Natl Acad Sci USA 1999 ; 96 : 9236–9241. [CrossRef] [Google Scholar]
  7. Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011 ; 83 : 8604–8610. [CrossRef] [PubMed] [Google Scholar]
  8. Dingle TC, Sedlak RH, Cook L, Jerome KR. Tolerance of droplet-digital PCR versus real-time quantitative PCR to inhibitory substances. Clin Chem 2013 ; 59 : 1670–1672. [CrossRef] [PubMed] [Google Scholar]
  9. Baker M.. Digital PCR hits its stride. Nat Methods 2012 ; 9 : 541–544. [CrossRef] [Google Scholar]
  10. Baret JC, Taly V, Ryckelynck M, et al. Gouttes et émulsions : criblage à très haut débit en biologie. Med Sci (Paris) 2009 ; 25 : 627–632. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Morrison T, Hurley J, Garcia J, et al. Nanoliter high throughput quantitative PCR. Nucleic Acids Res 2006 ; 34 : e123. [CrossRef] [PubMed] [Google Scholar]
  12. Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science 2002 ; 298 : 580–584. [CrossRef] [PubMed] [Google Scholar]
  13. Warren L, Bryder D, Weissman IL, Quake SR. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci USA 2006 ; 103 : 17807–17812. [CrossRef] [Google Scholar]
  14. Yung TKF, Chan KCA, Mok TSK, et al. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res 2009 ; 15 : 2076–2084. [CrossRef] [PubMed] [Google Scholar]
  15. Henríquez-Hernández LA, Valenciano A, Herrera-Ramos E, et al. High-throughput genotyping system as a robust and useful tool in oncology: experience from a single institution. Biologicals 2013 ; 41 : 424–429. [CrossRef] [PubMed] [Google Scholar]
  16. Hudson J, Duncavage E, Tamburrino A, et al. Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol 2013 ; 95 : 62–67. [CrossRef] [PubMed] [Google Scholar]
  17. Shen F, Du W, JE Kreutz JE, et al. Digital PCR on a SlipChip. Lab Chip 2010 ; 10 : 2666–2672. [CrossRef] [PubMed] [Google Scholar]
  18. Williams R, Peisajovich SG, Miller OJ, et al. Amplification of complex gene libraries by emulsion PCR. Nat Methods 2006 ; 3 : 545–550. [CrossRef] [PubMed] [Google Scholar]
  19. Huggett JF, Foy CA, Benes V, et al. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 2013 ; 59 : 892–902. [CrossRef] [PubMed] [Google Scholar]
  20. Theberge AB, Courtois F, Schaerli Y, et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chemie 2010 ; 49 : 5846–5868. [CrossRef] [Google Scholar]
  21. Dressman D, Yan H, Traverso G, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 2003 ; 100 : 8817–8822. [Google Scholar]
  22. Diehl F, Li M, Dressman D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 2005 ; 102 : 16368–16373. [Google Scholar]
  23. Taly V, Pekin D, El Abed A, Laurent-Puig P. Detecting biomarkers with microdroplet technology. Trends Mol Med 2012 ; 18 : 405–416. [CrossRef] [PubMed] [Google Scholar]
  24. Whitesides GM. The origins and the future of microfluidics. Nature 2006 ; 442 : 368–373. [CrossRef] [PubMed] [Google Scholar]
  25. The SY, Lin R, Hung LH, Lee AP. Droplet microfluidics. Lab Chip 2008 ; 8 : 198–220. [CrossRef] [PubMed] [Google Scholar]
  26. Baret JC. Surfactants in droplet-based microfluidics. Lab Chip 2012 ; 12 : 422–433. [CrossRef] [PubMed] [Google Scholar]
  27. Baret JC, Beck Y, Billas-Massobrio I, et al. Quantitative cell-based reporter gene assays using droplet-based microfluidics. Chem Biol 2010 ; 17 : 528–536. [CrossRef] [PubMed] [Google Scholar]
  28. Beer NR, Wheeler EK, Lee-houghton L, et al. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem 2008 ; 80 : 1854–1858. [CrossRef] [PubMed] [Google Scholar]
  29. Hatch AC, Fisher JS, Tovar AR, et al. 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 2011 ; 11 : 3838–3845. [CrossRef] [PubMed] [Google Scholar]
  30. Kiss MM, Ortoleva-Donnelly L, Beer NR, et al. High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 2008 ; 80 : 8975–8981. [CrossRef] [PubMed] [Google Scholar]
  31. Pekin D, Skhiri Y, Baret JC, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 2011 ; 11 : 2156–2166. [CrossRef] [PubMed] [Google Scholar]
  32. Taly V, Pekin D, Benhaim L, et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 2013 ; 59 : 1722–1731. [CrossRef] [PubMed] [Google Scholar]
  33. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014 ; 32 : 579–586. [CrossRef] [PubMed] [Google Scholar]
  34. Nixon G, Garson JA, Grant P, et al. Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus. Anal Chem 2014 ; 86 : 438794. [CrossRef] [Google Scholar]
  35. Sedlak RH, Cook L, Cheng A, et al. Evaluation of the clinical utility of droplet digital PCR for human cytomegalovirus. J Clin Microbiol 2014 ; 52 : 6–11. [CrossRef] [Google Scholar]
  36. Lun FMF, Chiu RWK, Allen Chan KC, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem 2008 ; 54 : 1664–1672. [CrossRef] [PubMed] [Google Scholar]
  37. Fan HC, Quake SR. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem 2007 ; 79 : 7576–7579. [CrossRef] [PubMed] [Google Scholar]
  38. Lun FMF, Tsui NBY, Chan KCA, et al. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Natl Acad Sci USA 2008 ; 105 : 19920–19925. [CrossRef] [Google Scholar]
  39. Fallah-Araghi A, Baret JC, Ryckelynck M, Griffiths AD. A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. Lab Chip 2012 ; 12 : 882–891. [CrossRef] [PubMed] [Google Scholar]
  40. Simi L, Pratesi N, Vignoli M, et al. High-resolution melting analysis for rapid detection of KRAS, BRAF, and PIK3CA gene mutations in colorectal cancer. Am J Clin Pathol 2008 ; 130 : 247–253. [CrossRef] [PubMed] [Google Scholar]
  41. Weichert W, Schewe C, Lehmann A, et al. KRAS genotyping of paraffin-embedded colorectal cancer tissue in routine diagnostics. J Mol Diagnostics 2010 ; 12 : 35–42. [CrossRef] [Google Scholar]
  42. Lièvre A, Bachet J-B, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008 ; 26 : 374–379. [CrossRef] [PubMed] [Google Scholar]
  43. Caen O, Nizard P, Garrigou S, et al. Apport de la PCR digitale pour la détection quantitative d’ADN tumoral circulant. Med Sci (Paris) 2015 ; 31 (sous presse). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.