Free Access
Med Sci (Paris)
Volume 31, Number 1, Janvier 2015
Page(s) 93 - 97
Section M/S Revues
Published online 06 February 2015
  1. Schreiber SL. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000 ; 287 : 1964–1969. [CrossRef] [PubMed] [Google Scholar]
  2. Burke MD, Schreiber SL. A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 2004 ; 43 : 46–58. [CrossRef] [Google Scholar]
  3. Peuchmaur M, Wong YS. Expanding the chemical space in practice: diversity-oriented synthesis. Comb Chem High Throughput Screen 2008 ; 11 : 587–601. [CrossRef] [PubMed] [Google Scholar]
  4. Wan J-P, Liu Y. Recent advances in new multicomponent synthesis of structurally diversified 1,4-dihydropyridines. RSC Adv 2012 ; 2 : 9763–9777. [CrossRef] [Google Scholar]
  5. Edraki N, Mehdipour AR, Khoshneviszadeh M, Miri R. Dihydropyridines: evaluation of their current and future pharmacological applications. Drug Discov Today 2009 ; 14 : 1058–1066. [CrossRef] [PubMed] [Google Scholar]
  6. Clemons PA, Bodycombe NE, Carrinski HA, et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc Natl Acad Sci USA 2010 ; 107 : 18787–18792. [CrossRef] [Google Scholar]
  7. Kumagai N, Muncipinto G, Schreiber SL. Short synthesis of skeletally and stereochemically diverse small molecules by coupling Petasis condensation reactions to cyclization reactions. Angew Chem Int Ed 2006 ; 45 : 3635–3638. [CrossRef] [Google Scholar]
  8. Robbins D, Newton AF, Gignoux C, et al. Synthesis of natural-product-like scaffolds in unprecedented efficiency via a 12-fold branching pathway. Chem Sci 2011 ; 2 : 2232–2235. [CrossRef] [Google Scholar]
  9. Muncipinto G, Kaya T, Wilson JA, et al. Expanding stereochemical and skeletal diversity using Petasis reactions and 1,3-dipolar cycloadditions. Org Lett 2010 ; 12 : 5230–5233. [CrossRef] [PubMed] [Google Scholar]
  10. Sauer WHB, Schwarz MK. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J Chem Inf Comput Sci 2003 ; 43 : 987–1003. [CrossRef] [PubMed] [Google Scholar]
  11. Kopp F, Stratton CF, Akella LB, Tan DS. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion. Nat Chem Biol 2012 ; 8 : 358–365. [CrossRef] [PubMed] [Google Scholar]
  12. Marcaurelle LA, Comer E, Dandapani S, et al. An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors. J Am Chem Soc 2010 ; 132 : 16962–16976. [CrossRef] [PubMed] [Google Scholar]
  13. Wender PA, Verma VA, Paxton TJ, Pillow TH. Function-oriented synthesis, step economy, and drug design. Acc Chem Res 2008 ; 41 : 40–49. [CrossRef] [PubMed] [Google Scholar]
  14. Traore M, Mietton F, Maubon D, et al. Flexible synthesis and evaluation of diverse anti-apicomplexa cyclic peptides. J Org Chem 2013 ; 78 : 3655–3675. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.